

# ANNUAL OF NAVIGATION 19/2012/part 2

10.2478/v10367-012-0015-7

STANISŁAW GUCMA, PAWEŁ ZALEWSKI Maritime University of Szczecin

## DETERMINISTIC-PROBABILISTIC METHOD OF WATERWAY DESIGN PARAMETERS DETERMINATION

## ABSTRACT

The paper presents a method of recommended waterway parameters determination, based on modified relationships derived from actual empirical research — the authors' combination of PIANC and Canadian deterministic methods and stochastic relationships). These relationships are mostly discontinuous functions (e.g. of ship type variable, speed, method of determining the position, etc.), which can be approximated by continuous spline functions. Application built in C# allows determining the recommended minimum width of the waterway, the width increase due to the accuracy of the vessel positioning method, and the minimum radius of waterway bends. The results can be further utilized in the Decision Support System for Water Transport Safety.

### Keywords:

waterway design parameters, safety analysis, safety management.

#### **INTRODUCTION**

Considering requirements for under keel clearance and dimensions of safe manoeuvring water area the basic condition of navigation safety can be written as [3, 4]:

where:

h(x, y, t) — depth at area point of (x, y) coordinates in moment t;

T(x, y, t) — draught of ship at area point of (x, y) in moment t;

 $\Delta(x, y, t)$  — reserve of under keel clearance at area point of (x, y) in moment t.

Sets of accessible sailing area  $\mathbf{D}(t)$ , and safe manoeuvring area  $\mathbf{d}_{ijk}$  can be identified with areas of specific linear parameters. The basic parameters deciding of safety of analysed manoeuvre in a fairway are fairway's widths. Due to this the condition of safe performance of the specified manoeuvre can be transformed to:

$$D(t)_{ijk} \ge d_{ijk} \tag{2}$$

where:

 $D(t)_{ijk}$  — width of a waterway at bottom in moment *t* (accessible sailing area of an *i*-th vessel carrying out *j*-th manoeuvre in *k*-th navigation condition);

 $d_{ijk}$  — safe width of a waterway for *i*-th ship, carrying out *j*-th manoeuvre in *k*-th navigation conditions.

The safe width of a waterway can be determined by utilizing one of the two models of ship's motion in restricted water areas:

- deterministic model;
- probabilistic model.

In the deterministic model the safe width of a waterway is defined as function of ship's parameters (i), performed manoeuvre (j) and present navigation conditions (k):

$$d_{ijk} = f(i, j, k) \tag{3}$$

In the probabilistic model the safe width of a waterway is defined as a random variable. To describe this parameter the normal (Gauss) distribution is usually preferred as it shows high fidelity to reality. The probability density function of distance of extreme points of the manoeuvring area to the fairway axis (centre) can be expressed as [3][4]:

$$f(d_{l}(y)) = \frac{1}{\delta_{l}\sqrt{2\Pi}} e^{-\frac{(y-m_{l})^{2}}{2\delta_{l}^{2}}}$$
(4)

$$f(d_p(y)) = \frac{1}{\delta_p \sqrt{2\Pi}} e^{-\frac{(y-m_p)^2}{2\delta_p^2}}$$
(5)

where:

 $d_i(y)$ ;  $d_p(y)$  — distances from the centre of the waterway to port and starboard limit of the manoeuvring area;

 $m_l$ ;  $\delta_l$  — average and standard deviation of the distances from the centre of the water way to port limit of the manoeuvring area;

ANNUAL OF NAVIGATION

 $m_p$ ;  $\delta_p$  — average and standard deviation of the distances from the centre of the waterway to starboard limit of the manoeuvring area.

And the safe width (assuming negative values to port from the centre of the waterway):

$$d_{\alpha} = -d_{l\alpha} + d_{p\alpha} = -m_l - k_{\alpha}\delta_l + m_p + k_{\alpha}\delta_p \tag{6}$$

where:

 $d_{\alpha}$  — safe width of a waterway at the specified confidence level 1- $\alpha$ ;

 $k_{\alpha}$  — coefficient dependent on the confidence level or probability:  $k\approx 2$  for  $p=1-\alpha=0.95$ .

The methods to define a safe width of a waterway can be divided into analytical (theoretical and empirical) and simulation ones depending on the approach used for obtaining the solution.

In the analytical model the safe width of the manoeuvring area at straight segment of the waterway can be defined by [3, 4]:

$$d = 2(d_n + d_m) + d_r \tag{7}$$

where:

$$d_m = d_{m1} + d_{m2} (8)$$

and:

 $d_n$  — navigation component of the width of a manoeuvring area (lane of ship's motion) [m];  $d_m$  — manoeuvring component of the width of a manoeuvring area (lane of ship's motion) [m];  $d_r$  — additional component of the width of a manoeuvring area (reserve for bank clearance) [m];  $d_{m1}$  — the width of the lane covered by ship's centre of gravity while yawing;  $d_{m2}$  — the width of the lane covered by ship's hull extending outside the motion trajectory.

Theoretical methods include the three components method [3] which describes elements of ship's motion by deterministic models and elements of ship's position by probabilistic model.

The fundamental empirical methods based on deterministic models are:

— the Panama Channel method [6];

— PIANC [5];

- Canadian [2];

— USACE or ASCE [1].

Empirical methods built on deterministic models evaluate fixed value of safe waterway width for the preliminary set navigation conditions, assuming that the evaluated width ensures safety of manoeuvring in the set conditions. This width is determined by non-simulation research, usually expert or statistical, each interpreting differently the safety definition according to predefined assumptions.

19/2012/part 2

The construction of Gucma method (called INM method) presented in [3] is different. It is empirical method in which the manoeuvring component of waterway width is evaluated by a deterministic model but the navigation component is determined by a probabilistic model (similarly to strictly theoretical three components method). This method utilizes the Panama Channel method for calculation of the manoeuvring component of waterway width [6].

Simulation methods are the most important studies leading to determination of safe manoeuvring area parameters.

The fundamental criteria of simulation methods classification used in marine traffic engineering systems are time and means of ship control. Considering time of simulation these methods can be divided into:

- RTS Real Time Simulation;
- FTS Fast Time Simulation.

Considering means of ship control the simulation methods can be divided into:

- simulation with non-autonomous models;
- simulation with autonomous models.

In simulation non-autonomous models the ship is controlled by human operator (the navigator) while in simulation autonomous models the ship is controlled by a mathematical model of real navigator.

A method generalizing simulation research results can be also utilized for assessing the width of safe manoeuvring area. This method allows evaluating parameters of safe manoeuvring area by post processing of simulation experiments for various ships, manoeuvres and navigation conditions. The final safe width of manoeuvring area is determined at specified confidence level by the regression analysis.

Simulation methods present best credibility for assessment of safe manoeuvring water areas especially for complicated manoeuvres in restricted waters and difficult navigational conditions. The empirical methods algorithmized by the authors and presented in this article can be applied for less complicated manoeuvres like passing straight legs and bends of a harbour approach fairway.

## DETERMINISTIC-PROBABILISTIC METHOD OF WATERWAY SAFE WIDTH DETERMINATION

The research conducted in Institute and Centre of Marine Traffic Engineering in Maritime University of Szczecin proved that on straight waterways the PIANC method results are closest to simulation ones. Utilizing this method the new deterministic-probabilistic method named MTEC method has been developed.

ANNUAL OF NAVIGATION

In this method the manoeuvring component of the ship's lane  $(d_m)$  is evaluated deterministically and navigation component is of probabilistic nature and it is evaluated at specified confidence level as  $d_n(1-\alpha)$ .

Taking into consideration that both navigation components (port and starboard) at straight waterways segments are equal:

$$d_{n}^{p}(1-\alpha) = d_{n}^{l}(1-\alpha) = d_{n}(1-\alpha)$$
<sup>(9)</sup>

and additional widths for bank clearance to port and starboard are also equal:

$$d_r^p = d_r^l = d_r \tag{10}$$

the resultant width of manoeuvring area (ship's lane) at specified confidence level  $(1-\alpha)$  will be:

$$D \ge d(1-\alpha) = d_m + 2d_n(1-\alpha) + 2d_r \tag{11}$$

where:

The algorithm for determination of manoeuvring component of a waterway width has been based on PIANC method [5] modified by CMA method [2] for bends and expert method for manoeuvring with tugs.

For a vessel manoeuvring without tugs the relations for the following parameters have been adopted directly from PIANC:

- basic manoeuvring lane width  $d_{mp}$ ;
- additional widths for bank clearance:  $d_r^p$ ;  $d_r^l$ ;
- additional widths:  $d_2$ ;  $d_3$ ;  $d_4$ ;  $d_5$ ;  $d_8$ .

19/2012/part 2

And the relations for the following parameters have been adopted directly from CMA:

- additional manoeuvring width at bend  $\Delta D$ ;
- transitional zone length  $l_T$ ;
- radius of waterway bend *R*.

For a ship sailing up to 12 knots the manoeuvring component takes form:

$$d_{m} = \begin{cases} d_{mp} + d_{2} + d_{3} + d_{4} + d_{5} + d_{8} + d_{rr} + d_{rg}, & \text{if } i_{dt} \in \{1,3,5\} \\ d_{mp} + d_{2} + d_{3} + d_{4} + d_{5} + d_{8} + d_{rr} + d_{rg} + \Delta D, & \text{if } i_{dt} \in \{2,4,6\} \end{cases}$$
(12)

where:

 $d_{mp}$ — basic manoeuvring lane width [m];  $d_2$ — additional width for prevailing cross wind [m]; — additional width for prevailing cross current [m];  $d_{3}$ — additional width for prevailing longitudinal current [m];  $d_{4}$  $d_5$ — additional width for significant wave height [m]; — additional width for depth of waterway [m];  $d_8$  $d_{rr}$ ,  $d_{rg}$  — additional widths for bank clearance to port and starboard side [m]; — additional manoeuvring width at bend [m];  $\Delta D$ - index of waterway type (odd numbers for straight sections, even numbers i<sub>dt</sub> for bends).

For a vessel manoeuvring with tugs the formula for basic manoeuvring lane width is modified as follows:

$$d_{mp} = k \cdot B, \text{ where } k = \begin{cases} 1.3, \text{ if good and moderate manoeuvrability} \\ 1.5, \text{ if poor manoeuvrability} \end{cases}$$
(13)  
and  $d_8=0.$ 

The algorithm for determination of navigational component of a waterway width has been based on RMS (root mean square) relations presented by Gucma in [4]. At straight section of a waterway the navigational component is equal to a directional error of shipboard farthest position at specified confidence level. This error is perpendicular to a fairway axis and given by the formula (3):

$$d_{n}(1-\alpha) = p_{yB}(1-\alpha) = \pm \sqrt{p_{y}(1-\alpha)^{2} + \left(\frac{m_{KR}(1-\alpha) \cdot L_{D}}{57.3^{\circ}}\right)^{2}}$$
(14)

ANNUAL OF NAVIGATION

where:

- $d_n(1-\alpha)$  directional error of shipboard position at confidence level of  $(1-\alpha)$  [m];
- $p_y(1-\alpha)$  directional error of ship's position (observer's position) at confidence level of  $(1-\alpha)$  [m];
- $m_{KR}(1-\alpha)$  ship's heading estimation error at confidence level  $(1-\alpha)$  [°] dependable on  $i_{dt}$ ;

$$L_D$$
 — distance from ship's bridge to bow [m], for most ships approximated to  $0.75 \times LOA$ .

Directional errors in the formula (14) have been defined:

- for eight main positioning methods in restricted water areas: PNS (Pilot Navigation System based on DGPS), leading lights, midchannel marks as leading marks, midchannel marks as distance marks, lateral marks as leading marks, lateral or mixed marks as distance marks, mixed marks (sight leading marks), bridge leading marks (pair of buoys or beacons);
- two sub-methods: buoys or beacons (except where PNS or leading lights are used);
- four types of visibility (> 2 Nm at day, at night, at night with no navigation or cultural lights, restricted visibility < 2 Nm).</li>

All directional errors of methods using navigation marks or bank lines/ structures have been further divided into terrestrical (optical) and radar.

The used formulas are mostly discontinuous functions (eg. of ship type variable, waterway type variable, speed, method of determining the position, etc.). The example can be navigational component of ship's path width determined for method of distance measurement to midchannel beacons [4]:

$$d_n(0.95) = \sqrt{p_y(0.95)^2 + \left(\frac{1.5LOA}{57.3}\right)^2}$$
(15)

where:

$$p_{y}(0.95) = \begin{cases} 5, & \text{if } x = 100 \text{ m} \\ 6, & \text{if } x = 200 \text{ m} \\ 10, & \text{if } x = 500 \text{ m} \\ 20, & \text{if } x = 1000 \text{ m} \\ 30, & \text{if } x = 1 \text{ Nm} \end{cases}$$
(16)

x — distance to the beacon.

19/2012/part 2

Such discontinuous functions as (16) have been approximated by continuous spline functions in the algorithm. In general, the  $i^{th}$  spline function for a cubic spline can be written as:

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
(17)

For *n* data points, there are n-1 intervals and thus 4(n-1) unknowns to evaluate to solve all the spline function coefficients  $a_i$ ,  $b_i$ ,  $c_i$ ,  $d_i$ . One condition requires that the spline function goes through the first and last point of the interval, yielding 2(n-1) equations of the form:

$$s_{i}(x_{i}) = f_{i} \Rightarrow a_{i} = f_{i}$$

$$s_{i}(x_{i+1}) = f_{i} \Rightarrow s_{i}(x_{i+1}) = a_{i} + b_{i}(x_{i+1} - x_{i}) + c_{i}(x_{i+1} - x_{i})^{2} + d_{i}(x_{i+1} - x_{i})^{3} = f_{i}$$
(18)

Another condition requires that the first derivative is continuous at each interior point, yielding n-2 equations of the form:

$$s'_{i}(x_{i+1}) = s'_{i+1}(x_{i+1}) \Longrightarrow b_{i} + 2c_{i}(x_{i+1} - x_{i}) + 3d_{i}(x_{i+1} - x_{i})^{2} = b_{i+1}$$
(19)

A third condition requires that the second derivative is continuous at each interior point, yielding n-2 equations of the form:

$$s_{i}^{"}(x_{i+1}) = s_{i+1}^{"}(x_{i+1}) \Longrightarrow 2c_{i} + 6d_{i}(x_{i+1} - x_{i}) = 2c_{i+1}$$
(20)

These give 4n-6 total equations. Two additional equations are derived assuming clamped end conditions – the first derivatives at the first and last knots are known or in other words the slope of the function at the first and last knots is set according to expertly presumed extrapolation.

### ALGORITHM

The general algorithm for analytical method of waterway design parameters determination is presented at block diagram in the fig. 1.

ANNUAL OF NAVIGATION



Fig 1. Block diagram of analytical method of waterway design parameters determination [own study]

Calculation of waterway width's manoeuvring component  $(d_m, R_m)$  and navigation component  $(d_n)$  is done independently of each other, but based on the common deterministic parameters defined in arrays accessible by indexes as follows:

- $i_k$  index of parameters' array depending on ship's type;
- $i_{dv}$  index of parameters' array depending on ship's speed;
- $i_{dt}$  index of parameters' array depending on waterway's type
- $i_{dh}$  index of parameters' array depending on tugs availability;
- $i_{d2}$  index of parameters' array depending on prevailing cross wind;
- $i_{d3}$  index of parameters' array depending on prevailing cross current;
- $i_{d4}$  index of parameters' array depending on prevailing longitudinal current;
- $i_{d5}$  index of parameters' array depending on significant wave height;
- $i_{d8}$  index of parameters' array depending on depth of a waterway;
- $i_{dK}$  index of parameters' array depending on course change at bend;
- $i_{R/L}$  index of parameters' array depending on bend radius to ship's LOA ratio.

## 19/2012/part 2

The discontinuity of the indexed parameters is solved by usage of spline functions as presented in chapter 2 (one example of cubic spline approximation of discontinuous function of bend radius is shown in the fig. 2).



Fig. 2. Line and cubic spline approximation of discontinuous function of bend radius [own study]

In the algorithm the following steps must be performed consecutively:

- 1. Uploading up-to-date database of waterway parameters.
- 2. Choice of area type, ship type, hydrometeorological conditions, tugs assistance (defined by several parameters).
- 3. Calculation of deterministic waterway parameters manoeuvring width component, bend radius.
- 4. Calculation of navigation width component depending on waterway type, aids to navigation, visibility.
- 5. Eventual risk analysis based on confidence level set in p. 4) calculation of grounding probability and its consequences.

The test interface of the algorithm implemented in Visual C# programming environment is presented in the fig. 3.

ANNUAL OF NAVIGATION

| Param                                                                                      | etry sta                                                                                                                                                             | atku:                                                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             |     |               |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|--------------------|-------------|-----|---------------|
|                                                                                            |                                                                                                                                                                      |                                                                                                                                                                           | o, konten                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             |     |               |
|                                                                                            | 2 - maso<br>3 - maso                                                                                                                                                 | owce za<br>owce i zł                                                                                                                                                      | i., zbiomił<br>piomikowi                                                                                                                                                 | cowce za<br>ce nod ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eł., drobnicowo<br>alastem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e                           |                     |                    |             |     |               |
| B = 1                                                                                      | 50                                                                                                                                                                   | m                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             |     |               |
| -                                                                                          |                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             | Wyn | iki 🗾         |
| LOA =                                                                                      | 315                                                                                                                                                                  | m                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             |     |               |
| Т=                                                                                         | 12                                                                                                                                                                   | m                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             | h/  | T_min = 1.06  |
|                                                                                            |                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             | DI  | 4_min = 135 m |
| Holown                                                                                     | iki: 🔳                                                                                                                                                               | lak                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             | PY  | 8 = 14 m      |
| Param                                                                                      | etry ak                                                                                                                                                              | wenu:                                                                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             | nv  | 8R = 31 m     |
|                                                                                            |                                                                                                                                                                      |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k prostoliniowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             |     |               |
|                                                                                            |                                                                                                                                                                      |                                                                                                                                                                           | wnętrzny                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | odcinek prost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -tata                       |                     |                    |             | Py  | BPNS = 6 m    |
|                                                                                            |                                                                                                                                                                      |                                                                                                                                                                           | ewnętrzny                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Diriowy                     |                     |                    |             | D_  | min = 163 m   |
|                                                                                            | 4 - tor v                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                     |                    |             |     |               |
|                                                                                            | 5 - tor v                                                                                                                                                            | vodný we                                                                                                                                                                  |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | odcinek prost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oliniowy                    |                     |                    |             |     |               |
|                                                                                            | 5 - tor v<br>6 - tor v                                                                                                                                               | vodný we<br>vodny we                                                                                                                                                      | ewnętrzny                                                                                                                                                                | /-kanał,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | zakole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oliniowy                    |                     |                    |             |     |               |
|                                                                                            | 5 - tor v<br>6 - tor v                                                                                                                                               | vodný we<br>vodny we<br>1 – dobr                                                                                                                                          | ewnętrzny<br>a widzialn                                                                                                                                                  | / - kanał,<br>ność > 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | zakole<br>/lm, dzień                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |                    |             |     | ОК            |
|                                                                                            | 5 - tor v<br>6 - tor v                                                                                                                                               | vodný we<br>vodny we<br>1 – dobr<br>2 – dobr                                                                                                                              | ewnętrzny<br>a widzialr<br>a widzialr                                                                                                                                    | / - kanał,<br>ność > 2N<br>ność > 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | zakole<br>/m, dzień<br>/m, noc, brzeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oświetlony                  |                     |                    |             |     | OK            |
|                                                                                            | 5 - tor v<br>6 - tor v                                                                                                                                               | vodný we<br>vodny we<br>1 – dobr<br>2 – dobr<br>3 – dobr                                                                                                                  | ewnętrzny<br>a widzialr<br>a widzialr<br>a widzialr                                                                                                                      | / - kanał,<br>ność > 20<br>ność > 20<br>ność > 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | zakole<br>/m, dzień<br>/m, noc, brzeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                     |                    |             |     | ОК            |
| Widziałr                                                                                   | 5 - tor v<br>6 - tor v<br>ność:                                                                                                                                      | vodný we<br>vodný we<br>1 – dobr<br>2 – dobr<br>3 – dobr<br>4 – ogra                                                                                                      | ewnętrzny<br>a widzialr<br>a widzialr<br>a widzialr                                                                                                                      | v - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , zakole<br>/ <mark>m, dzień</mark><br>/m, noc, brzeg<br>/m, noc, brzeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oświetlony                  |                     |                    |             |     | OK            |
| Widziałr<br>Metoda<br>1 – PN                                                               | 5 - tor v<br>6 - tor v<br>ność:<br>(<br>a określe<br>IS                                                                                                              | vodný we<br>vodný we<br>1 – dobr<br>2 – dobr<br>3 – dobr<br>4 – ogra                                                                                                      | ewnętrzny<br>a widzialn<br>a widzialn<br>a widzialn<br>niczona v                                                                                                         | v - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , zakole<br>/ <mark>m, dzień</mark><br>/m, noc, brzeg<br>/m, noc, brzeg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oświetlony<br>nieoświetlony | r =                 | 3704               | m           |     | OK            |
| Widziałr<br>Metoda<br>1 – PN<br>2 – nal                                                    | 5 - tor v<br>6 - tor v<br>ność:<br>2 określe<br>IS<br>bieżnik                                                                                                        | vodný we<br>vodný we<br>2 – dobr<br>3 – dobr<br>4 – ogra                                                                                                                  | ewnętrzny<br>a widzialn<br>a widzialn<br>a widzialn<br>niczona v                                                                                                         | v - kanał,<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zakole<br>/m, dzień<br>/m, noc, brzeg<br>/m, noc, brzeg<br>ść <= 2Mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oświetlony<br>nieoświetlony | r =<br>x =          | 3704<br>500        | m           |     | ОК            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>4 - ozr                                          | 5 - tor v<br>6 - tor v<br>ność:<br>a określe<br>IS<br>bieżnik<br>nakowa<br>nakowa                                                                                    | vodný we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>nia poło<br>nie centr<br>nie centr                                                                            | a widziała<br>a widziała<br>a widziała<br>niczona w<br>ożenia sta<br>ralne met.<br>ralne met.                                                                            | / - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:<br>nabieżni<br>oceny o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | zakole<br>/m, dzień<br>/m, noc, brzeg<br>/m, noc, brzeg<br>ść <= 2Mm<br>kowa<br>dległości                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oświetlony<br>nieoświetlony | x =                 | 500                | m           |     | OK            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>4 - ozr<br>5 - ozr                               | 5 - tor v<br>6 - tor v<br>ność:<br>a określe<br>IS<br>bieżnik<br>nakowa<br>nakowa<br>nakowa                                                                          | vodný we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>mia poło<br>nie centr<br>nie centr<br>nie contr                                                               | a widziała<br>a widziała<br>a widziała<br>a widziała<br>niczona w<br>pżenia sta<br>ralne met.                                                                            | / - kanał,<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:<br>nabieżni<br>oceny o<br>abieżniko                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | zakole<br>/m, dzień<br>/m, noc, brzeg<br>/m,                                                                                                                                                                                                                                                                                                                                                                                                           | oświetlony<br>nieoświetlony | x =<br>dk =         | 500<br>200         |             |     | ОК            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>4 - ozr<br>5 - ozr<br>6 - ozr<br>7 - ozr         | 5 - tor v<br>6 - tor v<br>ność:<br>a określe<br>IS<br>bieżnik<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa                                                      | vodny we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>enia poło<br>nie centr<br>nie centr<br>nie bocz<br>nie bocz<br>nie bocz                                       | a widziała<br>a widziała<br>a widziała<br>niczona w<br>ożenia sta<br>ralne met.<br>ne met. n<br>ne met. n<br>ne met. n<br>ne met. o<br>zane (nab                         | r - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:<br>nableżni<br>oceny od<br>abieżnik<br>ceny odł<br>ieżnik pra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | zakole<br><u>Im, dzień</u><br><u>Im, noc, brzeg</u><br><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc,</u></u></u></u></u></u> | oświetlony<br>nieoświetlony | x =                 | 500                | m           |     | ОК            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>4 - ozr<br>5 - ozr<br>6 - ozr<br>7 - ozr         | 5 - tor v<br>6 - tor v<br>ność:<br>a określe<br>IS<br>bieżnik<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa                                                      | vodny we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>enia poło<br>nie centr<br>nie centr<br>nie bocz<br>nie bocz<br>nie bocz                                       | ewnętrzny<br>a widziała<br>a widziała<br>niczona w<br>ożenia sta<br>rałne met.<br>ne met. n<br>ne met. o                                                                 | r - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:<br>nableżni<br>oceny od<br>abieżnik<br>ceny odł<br>ieżnik pra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | zakole<br><u>Im, dzień</u><br><u>Im, noc, brzeg</u><br><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc,</u></u></u></u></u></u> | oświetlony<br>nieoświetlony | x =<br>dk =         | 500<br>200         | m<br>m      |     | ОК            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>4 - ozr<br>5 - ozr<br>6 - ozr<br>7 - ozr         | 5 - tor v<br>6 - tor v<br>ność:<br>IS<br>bieżnik<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>bieżnik n                                                                | vodny we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>enia poło<br>nie centr<br>nie centr<br>nie bocz<br>nie bocz<br>nie bocz                                       | a widziała<br>a widziała<br>a widziała<br>niczona w<br>ożenia sta<br>ralne met.<br>ne met. n<br>ne met. n<br>ne met. n<br>ne met. o<br>zane (nab                         | r - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:<br>nableżni<br>oceny od<br>abieżnik<br>ceny odł<br>ieżnik pra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | zakole<br><u>Im, dzień</u><br><u>Im, noc, brzeg</u><br><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc, brzeg<br/><u>Im, noc,</u></u></u></u></u></u> | oświetlony<br>nieoświetlony | x =<br>dk =<br>db = | 500<br>200<br>2000 | m<br>m<br>m |     | ОК            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>5 - ozr<br>6 - ozr<br>7 - ozr<br>8 - nal         | 5 - tor v<br>6 - tor v<br>ność:<br>2 określe<br>IS<br>bieżnik<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa              | vodny we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>mia poło<br>nie centr<br>nie bocz<br>nie bocz<br>nie mies:<br>mostowy                                         | ewnętrzny<br>a widziałn<br>a widziałn<br>niczona v<br>ożenia sta<br>ralne met.<br>ne met. n<br>ne met. o<br>zane (nab<br>(para sta                                       | r - kanał,<br>ność > 2N<br>ność > 2N<br>ność > 2N<br>vidzialnoś<br>tku:<br>nabieżnik<br>oceny or<br>abieżnik<br>ceny odki<br>ieżnik pr<br>w/pław)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | zakole<br><u>Am, dzień</u><br>Am, noc, brzeg<br><u>Am, noc, brzeg</u><br><u>só</u> <= 2Mm<br><u>kowa</u><br><u>dległości</u><br><u>swa</u><br><u>egłości</u><br>zeziemikowy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oświetlony<br>nieoświetlony | x =<br>dk =<br>db = | 500<br>200<br>2000 | m<br>m<br>m |     | OK            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>5 - ozr<br>7 - ozr<br>8 - nal<br>Vdop =<br>Vwp = | 5 - tor v<br>6 - tor v<br>ność:<br>2 określe<br>IS<br>bieżnik<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa              | vodny we<br>vodny we<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>enia poło<br>nie centr<br>nie bocz<br>nie bocz<br>nie miesz<br>mostowy<br>w                                   | ewnętrzny<br>a widział<br>a widział<br>niczona w<br>ożenia sta<br>ożenia sta<br>calne met.<br>ne met. n<br>zane (nab<br>(para sta<br>hf =                                | <ul> <li>kanał,</li> <li>kanał,</li> <li>kakał,</li> <li>kakał,</li></ul> | zakole<br>/m, dzień<br>/m, noc, brzeg<br>/m, noc, brzeg<br>ść <= 2Mm<br>kowa<br>dłegłości<br>zwa<br>egłości<br>zeziemikowy)<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oświetlony<br>nieoświetlony | x =<br>dk =<br>db = | 500<br>200<br>2000 | m<br>m<br>m |     | OK            |
| Metoda<br>1 - PN<br>2 - nal<br>3 - ozr<br>5 - ozr<br>7 - ozr<br>8 - nal<br>Vdop =<br>Vwp = | 5 - tor v<br>6 - tor v<br>ność:<br>2 określe<br>1S<br>bieżnik<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>nakowa<br>10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | vodny we<br>vodny we<br>2 - dobr<br>2 - dobr<br>3 - dobr<br>4 - ogra<br>nia poło<br>nie centr<br>nie centr<br>nie bocz<br>nie bocz<br>nie miesz<br>mostowy<br>w<br>w<br>w | ewnętrzny<br>a widział<br>a widział<br>niczona w<br>ożenia sta<br>ralne met.<br>ne met. n<br>ne met. n<br>ne met. n<br>ne met. n<br>ne met. n<br>he met. n<br>h =<br>h = | <ul> <li>kanał,</li> <li>kanał,</li> <li>kakał,</li> <li>kakał,</li></ul> | zakole<br><u>Am, dzień</u><br>Im, noc, brzeg<br>Mm, noc, brzeg<br>ść <= 2Mm<br>dległości<br>wwa<br>egłości<br>zeziemikowy)<br>m<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oświetlony<br>nieoświetlony | x =<br>dk =<br>db = | 500<br>200<br>2000 | m<br>m<br>m |     | OK            |

Fig. 3. Test interface for input parameters and outputs [own study]

The preliminary graphical interface is optimized according to criterion of inputs data number — therefore more user/operator friendly (fig. 4).



Fig. 4. Preliminary graphical operator's interface [own study]

19/2012/part 2

It enables:

- choice from predefined parameters;
- graphical choice from predefined waterway's segments and their parameters readout.

## CONCLUSIONS

In the developed algorithm for analytical method of waterway design parameters determination the two components have been formulated:

- the manoeuvring component of a waterway width by deterministic formulas;
- the navigational component of a waterway width, probabilistically at the specified confidence level.

This algorithm has been implemented in the C# allowing operator determining the recommended total minimum width of the waterway, width increase due to the accuracy of the vessel positioning method — so the total width at specified confidence level, and the radius of waterway bends. The discontinuity of the empirical and approximate functions used has been solved by means of cubic spline functions.

Developed tool can be further utilized as an element of the Decision Support System for Water Transport Safety.

### REFERENCES

- [1] American Society of Civil Engineers, Ship Channel Design and Operation, ASCE Manuals and Reports on Engineering 2005.
- [2] Canadian Maritime Administration, Canadian Waterways National Manoeuvring Guidelines: Channel Design Parameters, Produced by Waterways Development, Marine Navigation Services, Canadian Coast Guard, Fisheries and Oceans Canada, 1999.
- [3] Gucma S., Sea Traffic Engineering. Shipbuilding and Shipping, Gdańsk 2001.
- [4] Gucma S., The Pilotage Navigation, The foundation of the promotion of the shipbuilding industry and the sea-economy, Gdańsk 2004.
- [5] PIANC, Approach Channels. A Guide for Designs, PTC II-30, Final report of the joint Working Group PIANC and IAPH in cooperation with IMPA and IALA, Supplement to Bulletin, 1997, No. 95.
- [6] Tsinker G. P. (ed.), Port Engineering: Planning, Construction, Maintenance, and Security, Headland J., Alfageme S., 10 Navigation Channel Design, John Wiley & Sons, Inc., New Jersey, U.S.A., 2004.

Received May 2012 Reviewed September 2012

ANNUAL OF NAVIGATION