PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On uniqueness of packing of three copies of 2-factors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The packing of three copies of a graph G is the union of three edge-disjoint copies (with the same vertex set) of G. In this paper, we completely solve the problem of the uniqueness of packing of three copies of 2-regular graphs. In particular, we show that C3,C4,C5,C6 and 2C3 have no packing of three copies, C7,C8,C3∪C4,C4∪C4,C3∪C5 and 3C3 have unique packing, and any other collection of cycles has at least two distinct packings.
Słowa kluczowe
Rocznik
Strony
79--101
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • AGH University of Krakow, Faculty of Applied Mathematics, Department of Discrete Mathematics, al. A. Mickiewicza 30, 30–059 Kraków, Poland
  • P.J. Šafárik University, Institute of Mathematics, Faculty of Science, Jesenná 5, 041 54 Košice, Slovak Republic
  • P.J. Šafárik University, Institute of Mathematics, Faculty of Science, Jesenná 5, 041 54 Košice, Slovak Republic
Bibliografia
  • [1] P. Adams, D. Bryant, Two-factorisations of complete graphs of orders fifteen and seventeen, Australas. J. Comb. 35 (2006), 113–118.
  • [2] M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London Math. Soc. (2) (1993), 39–51.
  • [3] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978), 105–124.
  • [4] D. Burns, S. Schuster, Every (p, p − 2) graph is contained in its complement, J. Graph Theory 1 (1977), 277–279.
  • [5] D. Burns, S. Schuster, Embedding (n, n−1) graphs in their complements, Israel J. Math. 30 (1978), 313–320.
  • [6] C.J. Colbourn, J.H. Dinitz (eds), The CRC Handbook of Combinatorial Designs, 2nd ed., CRC Press, Boca Raton, 2006.
  • [7] M. Dean, On Hamilton cycle decomposition of 6-regular circulant graphs, Graphs Combin. 22 (2006), 331–340.
  • [8] A. Deza, F. Franek, W. Hua, M. Meszka, A. Rosa, Solutions to the Oberwolfach problem for orders 18 to 40, J. Comb. Math. Comb. Comput. 74 (2010), 95–102.
  • [9] I. Grzelec, M. Pilśniak, M. Woźniak, A note on uniquely embeddable 2-factors, Appl. Math. Comput. 468 (2024), 128505.
  • [10] A. Hagberg, P. Swart, D. Schult, Exploring network structure, dynamics, and function using NetworkX (No. LA-UR-08–05495; LA-UR-08–5495). Los Alamos National Lab.(LANL), 2008, Los Alamos, NM (United States).
  • [11] C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268 (2003), 153–169.
  • [12] A.J.W. Hilton, M. Johnson, Some results on the Oberwolfach problem, J. London Math. Soc. 64 (2001), 513–522.
  • [13] M. Meszka, R. Nedela, A. Rosa, Circulants and the chromatic index of Steiner triple systems, Math. Slovaca 56 (2006) 371–378.
  • [14] J. Otfinowska, M. Woźniak, A Note on Uniquely Embeddable Forests, Discuss. Math. Graph Th. 33 (2013), no. 1, 193–201.
  • [15] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295–302.
  • [16] H. Wang, N. Sauer, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993), 137–142.
  • [17] Wolfram Research, Inc., Mathematica, Version 14.1, Champaign, IL (2024).
  • [18] M. Woźniak, Packing of graphs, Diss. Math. 362 (1997), pp. 78.
  • [19] M. Woźniak, A note on uniquely embeddable graphs, Discuss. Math. Graph Theory 18 (1998), 15–21.
  • [20] M. Woźniak, Packing of graphs and permutation – a survey, Discrete Math. 276 (2004), 379–391.
  • [21] M. Woźniak, A.P. Wojda, Triple placement of graphs, Graphs Combin. 9 (1993), 85–91.
  • [22] H.P. Yap, Packing of graphs – a survey, Discrete Math. 72 (1988), 395–404.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6cac43b2-ddae-4ef1-b9fd-1eb1ce4dfc67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.