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ON UNIQUENESS OF PACKING OF
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Abstract. The packing of three copies of a graph G is the union of three edge-disjoint
copies (with the same vertex set) of G. In this paper, we completely solve the problem of
the uniqueness of packing of three copies of 2-regular graphs. In particular, we show that
C3, C4, C5, C6 and 2C3 have no packing of three copies, C7, C8, C3∪C4, C4∪C4, C3∪C5
and 3C3 have unique packing, and any other collection of cycles has at least two
distinct packings.

Keywords: uniquely packable graph, 2-factor, 3-packing.

Mathematics Subject Classification: 05C70.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected and have neither loops nor
multiple edges. For a graph G, we will denote its order |V (G)| and size |E(G)| as
n and m, respectively.

At the beginning, we present additional definitions which will be useful to formulate
the results. For two graphs G1 and G2 with disjoint vertex sets, the union G = G1 ∪G2
has V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The union of n ≥ 2
disjoint copies of a graph H is denoted by G = nH. Further, for graphs G1 and
G2 such that V (G1) = V (G2) and E(G1) ∩ E(G2) = ∅, the edge-sum G1 ⊕ G2 has
V (G) = V (G1) = V (G2) and E(G) = E(G1) ∪ E(G2).

Let G be a graph of order n. An embedding of G into complete graph Kn is
an injective mapping ϕ : V (G) → V (Kn) such that ϕ(x)ϕ(y) ∈ E(Kn) whenever
xy ∈ E(G). Denote by ϕ(G) the graph with the vertex set V and the edge set ϕ∗(E)
where the mapping ϕ∗ is induced by ϕ. A packing of l graphs G1, G2, . . . , Gl (l ≥ 2)
into Kn is a l-tuple Φ = (ϕ1, ϕ2, . . . , ϕl) such that, for each i = 1, 2, . . . , l, ϕi is an
embedding of Gi into Kn and ϕi(Gi) and ϕj(Gj) are edge-disjoint subgraphs of Kn

for any i ̸= j. When all Gi are isomorphic to G, Φ is called a l-packing of G.
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One of the first results on packing problem is the following theorem, which was
proved independently in [3, 4] and [15]:

Theorem 1.1. Let G = (V, E) be a graph of order n and size m. If m ≤ n − 2, then
G has a 2-packing.

We can easily see that the star K1,n−1 has not a 2-packing. Therefore, Theorem 1.1
cannot be improved by raising the size of G. Burns and Schuster in [5] described
the full characterization of graphs of order n and size n − 1 that have a 2-packing:

Theorem 1.2. Let G = (V, E) be a graph of order n and size m. If m ≤ n − 1, then
either G has a 2-packing or G is isomorphic to one of the following graphs: K1,n−1,
K1,n−4 ∪ K3 with n ≥ 8, K1 ∪ K3, K2 ∪ K3, K1 ∪ 2K3, K1 ∪ C4.

Considering the problem of the uniqueness of graph packings, let us explain first
what we mean by unique l-packings. From the definition of the l-packing of G, we
may create the graph Φ̃(G) = ϕ1(G) ⊕ ϕ2(G) ⊕ . . . ⊕ ϕl(G). Let Φ′ = (ϕ′

1, ϕ′
2, . . . , ϕ′

l)
be another l-packing of G. If Φ̃(G) and Φ̃′(G) are isomorphic, then we call Φ and
Φ′ isomorphic. We say that the l-packing of G is unique if all l-packings of G are
isomorphic, otherwise G is not uniquely l-packable.

The problem of the uniqueness of 2-packing of graphs has been the subject of three
papers. The next theorem from [19] characterizes all graphs of order n and size n − 2
that are uniquely 2-packable:

Theorem 1.3. Let G be a graph of order n and size m = n − 2. Then either G is not
uniquely 2-packable or G is isomorphic to one of the six following graphs: K2 ∪ K1,
2K2, K3 ∪ 2K1, K3 ∪ K2 ∪ K1, K3 ∪ 2K2, 2K3 ∪ 2K1.

The following characterization of uniquely 2-packable forests was proved in [14].

Theorem 1.4. Let F be a forest of order n having at least one edge. Then either F
is not uniquely 2-packable or F is isomorphic to one of the following graphs: K2 ∪ K1,
2K2, 3K2, the double star S(p, q) or the (n − 1)-vertex star with one edge subdivided.

Recently the problem of the uniqueness of 2-packings was completely solved for
2-factors, i.e. a vertex-disjoint union of cycles. More precisely, the following theorem
was proved in [9]:

Theorem 1.5. Let G be a vertex-disjoint union of k cycles. If G is C3, C4 or 2C3 then
G is not 2-packable. The graphs C5, C6, C3 ∪ C4, C3 ∪ C5, 3C3 and 4C3 are uniquely
2-packable. In every other case, there exist at least two distinct 2-packings of G.

For other results on different packing problems, we refer the reader to the survey
papers [18, 20, 22].

It is worth to mention two results on the existence of 3-packing of a graph. In [21],
the following theorem (which yields full characterization of all graphs of order n and
size n − 2 that have a 3-packing) was proved:

Theorem 1.6. Let G be a graph of order n and size m. If m ≤ n − 2, then either
there exists a 3-packing of G or G ∈ {K3 ∪ 2K1, K4 ∪ 4K1}.
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In [16], the full characterization of all trees that have a 3-packing was proved:

Theorem 1.7. Let T be a tree of order n ≥ 6 which is neither a star nor a star with
one edge subdivided, nor else a 6-vertex star with one edge subdivided twice. Then there
exists a 3-packing of T .

The purpose of this paper is to consider the problem of the uniqueness of 3-packing of
graphs for 2-factors. This problem for 2-factors is related to the well-known Oberwolfach
problem which is still open. To present this problem in a formal way, we provide
additional definitions. By a 2-factorization of a graph G we mean an edge-disjoint
partition of the edge set of G into 2-factors. A 1-factor of a graph G (i.e. a perfect
matching of G) will be denoted by I. The Oberwolfach problem (OP for short) asks
whether a complete graph Kn (for n odd), or Kn without a 1-factor (for n even),
admits a 2-factorization in which each 2-factor is isomorphic to a given 2-factor.
More precisely, an instance OP(n; n1, . . . , nk) of the Oberwolfach problem asks if
there is a 2-factorization of Kn for n odd, or Kn \ I for n even, such that each 2-factor
is isomorphic to Cn1 ∪Cn2 ∪ . . .∪Cnk

. Since the problem was posed in 1967 by Gerhard
Ringel, many papers on the topic were published. With an exception of four cases,
namely OP(6; 32), OP(9; 4, 5), OP(11; 32, 5) and OP(12; 34) (here, the superscript
refers to the repetition of the number), for which solutions do not exist, solutions were
obtained for all orders n ≤ 40 (see [1] and [8]) and for many special cases (for example
OP(n; rk, n − rk) for all n ≥ 6kr − 1, see [12]). For more results on this topic, we refer
the reader to the survey [6].

Now, we introduce the relation between the problem of the uniqueness of 3-packing
of a 2-factor and the Oberwolfach problem. Because the sum of three edge disjoint
copies (with common vertex set) of any 2-factor is a 6-regular graph, 2-factors for
which there exists a 3-packing shall have order at least seven.

Observation 1.8. For any 2-factor G = Cn1 ∪Cn2 ∪. . .∪Cnk
of order n = n1+. . .+nk,

where n ≥ 7, if there exists a solution for the instance OP(n; n1, . . . , nk) of the
Oberwolfach problem then there exists a 3-packing of G.

Remark that the converse of Observation 1.8 does not hold; it suffices to find
a 3-packing of C4 ∪ C5, because OP(9; 4, 5) has no solution. The 3-packing of this
2-factor is presented in Section 5. Moreover, considering complements of 3-packings
of 2-factor of order seven and eight, we can easily see that they are isomorphic
to a graph of size zero and order seven, and to a perfect matching of order eight,
respectively. Therefore, the following observation holds:

Observation 1.9. For any 2-factor G = Cn1 ∪Cn2 ∪. . .∪Cnk
of order n = n1+. . .+nk,

where n ∈ {7, 8}, if there exists a solution for the instance OP(n; n1, . . . , nk) of the
Oberwolfach problem, then there exist a unique 3-packing of G.

Note that the above observations can be generalized to the problem of the unique-
ness of l-packing, for l ≥ 4, of 2-factors using similar reasoning. For any 2-factor
G = Cn1 ∪ Cn2 ∪ . . . ∪ Cnk

of order n = n1 + . . . + nk with n ≥ 2l + 1 such that
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OP(n; n1, . . . , nk) has a solution, it is easy to see that there exists l-packing of G.
Furthermore, for any 2-factor G = Cn1 ∪ Cn2 ∪ . . . ∪ Cnk

of order n = n1 + . . . + nk,
where n ∈ {2l + 1, 2l + 2}, if there exists a solution for OP(n; n1, . . . , nk), then there
exists a unique l-packing of G.

Now, we introduce our main result.

Theorem 1.10. Let G = Cn1 ∪ Cn2 ∪ . . . ∪ Cnk
be a vertex-disjoint union of k cycles.

For cycles C3, C4, C5, C6 and the graph 2C3, there is no 3-packing. The graphs C7,
C8, C3 ∪ C4, C4 ∪ C4, C3 ∪ C5 and 3C3 have unique 3-packing. For any other graph G,
there exist at least two distinct 3-packings.

The proof of Theorem 1.10 is presented in the next sections. Section 2 contains
the case of cycles, Section 3 presents the proof of the existence of 3-packing of
2-factors (for k ≥ 2) and general strategy of the remaining part of the proof, Section
4 contains the proof of the existence of at least two distinct 3-packings of 2-factors
for five particular families of 2-factors, and the last section presents the proof for the
remaining small cases.

Remark. To better differentiate between copies of G in a 3-packing Φ(G) = (ϕ1, ϕ2, ϕ3)
(both in subsequent figures and proofs), we say that ϕ1(G) (the first or initial copy
of G) is black, ϕ2(G) (the second copy of G) is red and ϕ3(G) (the third copy of G)
is blue in such a 3-packing of G; this is useful, in particular, when a 3-packing is
presented solely by a figure. Moreover, let ϕ1 be an identity embedding (ϕ1(x) = x for
all x ∈ V (G)).

For the proof of our main result, we will need the following lemma which generalizes
Lemma 6 from [9].

Lemma 1.11. If a graph G = Cn1 ∪ Cn2 ∪ . . . ∪ Cnk
has a 3-packing α such that

the graph α1(G) ⊕ α2(G) ⊕ α3(G) is not connected (a disconnected 3-packing), then
G has another 3-packing α′ such that the graph α′

1(G) ⊕ α′
2(G) ⊕ α′

3(G) is connected
(a connected 3-packing). In particular, the graph G has two distinct 3-packings.

Proof. Let α be the 3-packing with the smallest number of connected components. If
H = α1(G) ⊕ α2(G) ⊕ α3(G) is connected, we are done. Otherwise, let H1, H2 be two
components of H.

Take a vertex x1 of H1 such that removing the two blue edges x−
1 x1 and x+

1 x1
(where x−

1 and x+
1 are neighbors of x1 on the blue cycle in H1) leaves H1 connected.

In a similar manner, take x2, a vertex belonging to the component H2. Note that such
selections of x1 and x2 are always possible: it suffices to take, in H1 and H2, any vertex
that is not a cut vertex (for example, the last vertex on the longest component path).

If now instead of the edges x−
1 x1 and x+

1 x1 we add two blue edges x−
2 x1 and

x+
2 x1, and instead of the edges x−

2 x2 and x+
2 x2 we add two blue edges x−

1 x2 and x+
1 x2,

we obtain a new 3-packing α′ where two components H1 and H2 become one connected
component. However, this is a contradiction with the choice of the 3-packing α.
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2. CYCLES

In this section we prove the following lemma which will be useful in the remaining
part of the proof:
Lemma 2.1. Let Cn be a cycle of length n. For cycles C3, C4, C5 and C6, there is
no 3-packing. The cycles C7 and C8 have unique 3-packing. For longer cycles, there
exist at least two distinct 3-packings.
Proof. Obviously, the cycles C3, C4, C5 and C6 do not have 3-packing because such
a 3-packing is always a 6-regular graph. From Observation 1.9 we know that C7 and
C8 have unique 3-packing.

We will denote by Cn(a, b, c) the 6-regular circulant graph on n vertices with
generators a, b and c, that is, the graph with vertex set Zn = {0, . . . , n − 1} and edge
set {{x, x+s} : x ∈ Zn, s ∈ {a, b, c}} (note that the addition is modulo n). In [7], Dean
proved that every 6-regular circulant graph on n vertices with at least one generator
of order n (with respect to the group Zn) has Hamiltonian cycle decomposition. Thus,
it suffices to find, for any n ≥ 9, two nonisomorphic 6-regular circulant graphs on
n vertices with at least one generator of order n; this confirms that there exist two
distinct 3-packings of a cycle with at least nine vertices.

To distinguish between 6-regular circulant graphs on n ≥ 9 vertices with at least
one generator of order n, we use their chromatic number. The following two results
from [13] and [11] give information on the chromatic number of specific 6-regular
circulant graphs:
Theorem 2.2. Let G = Cn(a, b, c) be a connected 6-regular circulant graph, where
n ≥ 7, c = a + b or n − c = a + b are pairwise distinct positive integers different from
n/2. Let χ(G) be the chromatic number of G. Then
(1) χ(G) = 7 if and only if G ∼= K7 ∼= C7(1, 2, 3),
(2) χ(G) = 6 if and only if G ∼= C11(1, 2, 3),
(3) χ(G) = 5 if and only if G ∼= Cn(1, 2, 3) and n ̸= 7, 11 is not divisible by 4, or G

is isomorphic to one of the following circulant graphs: C13(1, 3, 4), C17(1, 3, 4),
C18(1, 3, 4), C19(1, 7, 8), C25(1, 3, 4), C26(1, 7, 8), C33(1, 6, 7), C37(1, 10, 11),

(4) χ(G) = 3 if and only if n is divisible by 3 and none of a, b, c is divisible by 3,
(5) χ(G) = 4 in all the remaining cases.
Theorem 2.3. Let G be a connected circulant graph of order n. Then G is bipartite
if and only if n is even and all generators are odd.

From Theorem 2.2 we have that there exist two nonisomorphic 6-regular circulant
graphs of order n ≥ 9 where n ̸= 11 and n ̸≡ 0 (mod 4): one can take, for example,
Cn(1, 2, 3) which has chromatic number equal to five and Cn(1, 4, 5) which has chro-
matic number equal to three or four. The same theorem yields that C11(1, 4, 5) has
chromatic number equal to four, and C11(1, 2, 3) has chromatic number equal to six.
Hence, it remains to find two nonisomorphic 6-regular circulant of graphs of order n ≥ 9
where n is divisible by four. Using Theorem 2.3, we know that C4l(1, 3, 5) is bipartite
whereas C4l(1, 3, 4) is not bipartite. Therefore, there always exist two nonisomorphic
6-regular circulant graphs on n ≥ 9 vertices with one generator of order n.
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3. GENERAL STRATEGY OF THE PROOF FOR 2-FACTORS WHERE k ≥ 2

At first, we prove the following useful lemma about the existence of 3-packing of
2-factors which contain at least two cycles:

Lemma 3.1. Let G be a vertex-disjoint union of k ≥ 2 cycles. Then G has a 3-packing
except when G = 2C3.

Proof. In the proof, we use the following Aigner and Brandt result from [2]:

Theorem 3.2. Let H be a graph of order n with δ(H) ≥ 2n−1
3 . Then H contains any

graph G of order at most n with ∆(G) = 2 (as a subgraph).

From Theorem 1.5 we know that the graph 2C3 is the only one which is not
2-packable, and therefore 2C3 also does not have a 3-packing; hence, we can assume
that n > 6. From the fact that 2-packing of a 2-factor is always a 4-regular graph, we
obtain that its complement H has δ(H) = n−1−4 = n−5. From Theorem 3.2 we can
see that H contains a packing of additional third copy of G if δ(H) ≥ 2n−1

3 . Therefore,
for every n ≥ 14 we have n−5 = δ(H) ≥ 2n−1

3 , and so contains a packing of additional
third copy of G. This proves that every 2-factor G of order n ≥ 14 has a 3-packing.

Using Observation 1.8 and the Oberwolfach problem solutions for all orders n ≤ 40
(see [1] and [8]), we get that every 2-factor G of order 7 ≤ n ≤ 14 except for C4 ∪ C5,
2C3 ∪ C5 and 4C3 has a 3-packing. The 3-packings of C4 ∪ C5, 2C3 ∪ C5 and 4C3 also
exist, and they are presented in Section 5.

Now, we present the general strategy of the remaining part of the proof of our main
result. Assume that G = Cn1 ∪Cn2 ∪ . . .∪Cnk

is a vertex-disjoint union of k ≥ 2 cycles,
where n = n1 + . . . + nk. Without loss of generality, assume that n1 ≤ n2 ≤ . . . ≤ nk.
Note that for all such 2-factors, except for 2C3, a 3-packing exists by Lemma 3.1. From
Observation 1.9 and the Oberwolfach problem solutions for orders n ∈ {7, 8} we know
that 2-factors on seven and eight vertices have unique 3-packing. Therefore, we may
assume that n ≥ 9. We consider several cases according to k.

If k = 2 then G = Cn1 ∪ Cn2 and n1 ≤ n2. If n1 ≥ 7, we have disconnected
3-packing of G which consists of two components. Each of these components we obtain
as a 3-packing of a cycle from Lemma 2.1. Thus, by Lemma 1.11, the graph G has
two distinct 3-packings. Therefore, we have to consider four families of 2-factors:
G = C3 ∪ Cx where x ≥ 6, G = C4 ∪ Cx where x ≥ 5, G = C5 ∪ Cx where x ≥ 5 and
G = C6 ∪ Cx where x ≥ 6. The uniqueness of 3-packing of 2-factors from these families
is investigated in Section 4 for x ≥ 11 and in Section 5 for x ≤ 10.

If k = 3 then G = Cn1 ∪ Cn2 ∪ Cn3 and n1 ≤ n2 ≤ n3. We can divide G into two
subgraphs G1 = Cn1 ∪ Cn2 and G2 = Cn3 . Thus, from Lemmas 2.1 and 3.1 we get
a 3-packing of G1 and G2 except for the case G = C3 ∪ C3 ∪ Cx where x ≥ 3, and the
following twelve 2-factors:
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G = C3 ∪ C4 ∪ C4, G = C3 ∪ C4 ∪ C5, G = C3 ∪ C4 ∪ C6,

G = C4 ∪ C4 ∪ C4, G = C4 ∪ C4 ∪ C5, G = C4 ∪ C4 ∪ C6,

G = C4 ∪ C5 ∪ C5, G = C4 ∪ C5 ∪ C6, G = C5 ∪ C5 ∪ C5,

G = C5 ∪ C5 ∪ C6, G = C5 ∪ C6 ∪ C6, G = C6 ∪ C6 ∪ C6.

Therefore, by Lemma 1.11, the graph G has two distinct 3-packings. The uniqueness of
3-packing of 2-factors from the family G = C3 ∪C3 ∪Cx where x ≥ 11 is investigated in
Section 4 and, in Section 5, we investigate 2-factors from the family G = C3 ∪ C3 ∪ Cx

where x ∈ {3, 4, . . . , 11} and the above mentioned twelve exceptional 2-factors.
If k = 4 then G = Cn1 ∪ Cn2 ∪ Cn3 ∪ Cn4 and n1 ≤ n2 ≤ n3 ≤ n4. If at least two

ni (where i ∈ {1, 2, 3, 4}) are different from three then we can divide G into two parts
G = G1 ∪ G2 such that both G1 and G2 have 3-packing by Lemma 3.1. Therefore, by
Lemma 1.11, the graph G has two distinct 3-packings. We argue similarly when n4 ≥ 7
(however, in this case, we need to use also Lemma 2.1). Thus, we are left with the
following 2-factors: G = C3 ∪C3 ∪C3 ∪C3, G = C3 ∪C3 ∪C3 ∪C4, G = C3 ∪C3 ∪C3 ∪C5
and G = C3 ∪ C3 ∪ C3 ∪ C6; the uniqueness of 3-packing of these four 2-factors is
investigated in Section 5.

If k = 5 then G = Cn1 ∪ Cn2 ∪ Cn3 ∪ Cn4 ∪ Cn5 and n1 ≤ n2 ≤ n3 ≤ n4 ≤ n5. If
n5 ≥ 4, we can divide G into two parts G = G1 ∪ G2 such that G1 = Cn1 ∪ Cn2 ∪ Cn3

and G2 = Cn4 ∪ Cn5 have 3-packing by Lemma 3.1. Therefore, by Lemma 1.11, we
know that G has two distinct 3-packings. Thus, we have to investigate the uniqueness
of 3-packing of G = 5C3; this will be done in Section 5.

If k ≥ 6 then G = Cn1 ∪ Cn2 ∪ . . . ∪ Cnk
and n1 ≤ n2 ≤ . . . ≤ nk. We can divide G

into two parts G = G1∪G2 so that G1 = Cn1 ∪Cn2 ∪Cn3 and G2 = Cn4 ∪Cn5 ∪. . .∪Cnk
.

From Lemma 3.1 and the fact that k ≥ 6, we have 3-packings of G1 and G2. Therefore,
G has a disconnected 3-packing, and, from Lemma 1.11, we get the connected one.

4. FIVE PARTICULAR FAMILIES OF 2-FACTORS

In this section we present two distinct 3-packings of 2-factors from five families: C3 ∪Cx,
C4 ∪ Cx, C5 ∪ Cx, C6 ∪ Cx and C3 ∪ C3 ∪ Cx where x ≥ 11. We use the construction
approach. The first presented 3-packing of these 2-factors will contain a clique K5
whereas the second one will not. At first, we present the 3-packing with a clique K5.

We start our construction of 3-packing of 2-factors with a clique K5 from the
smallest graphs in each family, that is, the graphs C3 ∪C11, C4 ∪C11, C5 ∪C11, C6 ∪C11
and C3 ∪C3 ∪C11. The 3-packing of these 2-factors is presented in Figures 1 and 2. For
the clarity of drawings, some cycles connecting vertices marked with the same color
and type of the marker are not drawn. More precisely, in Figure 1, in the 3-packing
of C3 ∪ C11, we have also the red cycle v1v4v10v1 and the blue cycle v2v12v11v2. In
the 3-packing of C4 ∪ C11, we have also the red cycle v1v4v7v10v1 and the blue cycle
v2v12v14v11v2. In the 3-packing of C5 ∪ C11, we have also the red cycle v1v4v13v7v10v1
and, in the 3-packing of C6 ∪ C11, we have also the red cycle v1v4v13v16v7v10v1.
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Fig. 1. The 3-packing of C3 ∪ C11, C4 ∪ C11, C5 ∪ C11 and C6 ∪ C11 with a clique K5
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Similarly, in Figure 2, in the 3-packing of C3 ∪ C3 ∪ C11, we have also red cycles
v1v4v10v1, v7v13v15v7 and blue cycles v2v14v15v2, v11v13v16v11. Note that each of these
3-packings contains a subgraph K5 induced by vertices v5, v6, v7, v8 and v9.

v1
v2

v3

v4

v5

v6
v7

v8

v9

v10

v11

v12

v13

v14v15

v16

v17

C3 ∪ C3 ∪ C11

Fig. 2. The 3-packing of C3 ∪ C3 ∪ C11 with a clique K5

The presented 3-packings of the smallest graphs from these particular families
are easily extendable to appropriate graphs from these families if the longest cycle
Cx in the considered 2-factor has odd length. Note that in every already-presented
3-packing, the vertices v10, v11, v1, v2 and v3 induce almost the same subgraph (up to
the edge v11v2 which is not present in the 3-packing of C3 ∪ C3 ∪ C11). Therefore, we
introduce a common extension for these 3-packings in which we will change only the
“upper part” of the 3-packing, which contains vertices v10, v11, v1, v2, v3 and edges
incident to them. The method of extension depends on the number of edges added
to the longest cycle in each copy of the smallest 2-factor in the respective family. To
increase the length of the longest cycle in each copy of the smallest 2-factor in these
families by 2, 4 or 6, we use appropriate extension presented in Figure 3. For better
understanding, we describe each of these extensions in detail.

Extension by 2. At first, we replace black edges v2v3 and v11v10 by black paths
v2a1v3 and v11b1v10, respectively. Then, we replace red edge v11v8 by red edge b1v8.
Next, we replace the red edge from the “bottom part” to v3 by the red edge from
the same vertex in the “bottom part” to a1. Then, we replace the blue edge from the
“bottom part” to v1 by the blue edge from the same vertex in the “bottom part” to b1.
At the end, we add red edges b1v3, v11a1 and the blue path v1a1b1.
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Extension by 4. At first, we replace black edges v2v3 and v11v10 by black paths
v2a1a2v3 and v11b1b2v10, respectively. Then, we replace the red edge from the “bottom
part” to v3 by the red edge from the same vertex in the “bottom part” to a1. Next,
we replace the blue edge from the “bottom part” to v1 by the blue edge from the
same vertex in the “bottom part” to b2. Then, we remove the red edge v11v3. Next, we
replace two red edges from the “bottom part” to v2 by two red edges from the same
vertices in the “bottom part” to a2. At the end, we add the red path a1v3b1v2b2v11
and the blue path v1a1b1a2b2.

Extension by 6. At first, we replace black edges v2v3 and v11v10 by black paths
v2a1a2a3v3 and v11b1b2b3v10, respectively. Then, we replace the blue edge from the
“bottom part” to v1 by the blue edge from the same vertex in the “bottom part” to b3.
Then, we remove the red edge v11v3 and the blue edge v1v3. Next, we replace two red
edges from the “bottom part” to v2 by two red edges from the same vertices in the
“bottom part” to a3. At the end, we add the red path v3b1v2b3a2b2a1v11 and the blue
path v3b2a3b1a2v1a1b3.

Now, we describe how to create the 3-packing of a 2-factor with the longest cycle
C11+2t, for t > 3, from the smallest 2-factor in the respective family. At first, we replace
black edges v2v3 and v11v10 by black paths v2a1a2 . . . atv3 and v11b1b2 . . . btv10, respec-
tively. Then, we replace the blue edge from the “bottom part” to v1 by the blue edge
from the same vertex in the “bottom part” to bt. Then, we remove the red edge v11v3 and
the blue edge v1v3. At the end, we add the red path v3b1atbtat−1bt−1 . . . a2b2a1v11
and the blue path v3bt−1atbt−2at−1 . . . b2a3b1a2v1a1bt. This extension of 3-packing is
also presented in Figure 3.

v1
v2

v3v10

v11

a1b1

Extension by 2

v1
v2

v3v10

v11

a1b1

b2 a2

Extension by 4

v1
v2

v3

b3

v11

a1b1

b2 a2

v10

a3

Extension by 6

v1
v2

v3

b3

v11

a1b1

b2 a2

v10

a3

Extension by 2t, where t > 3

bt

bt−2

bt−1

at−2

at−1

at

Fig. 3. The extensions of 3-packings of 2-factors from five particular families
when the longest cycle has odd length



On uniqueness of packing of three copies of 2-factors 89

Now, we show how to obtain a 3-packing of a 2-factor from each of these families, if
the longest cycle in 2-factor has an even length x. We take the 3-packing of a 2-factor
in which the longest cycle has length x − 1. We replace: the black edge v1v2 by the
black path v1vcv2, the blue edge v10v3 by the blue path v10vcv3, the red edge v11v8
by the red path v11vcv8 (if x = 14, we replace the red edge v11a1 by the red path
v11vca1). Thus, we obtain a 3-packing of a 2-factor from each of these families if the
longest cycle in 2-factor has an even length. Note that in each 3-packing which we
obtain using the above extensions we have induced subgraph K5 on vertices v5, v6, v7,
v8 and v9.

Next, for 2-factors from these five particular families, we present K5-free 3-packings,
i.e., 3-packings which do not contain a clique K5. Note that m ≥ 2 edges of a graph
are independent if no two of them share a common vertex. The following observation
is particularly useful for the construction:

Observation 4.1. Let B be a union of cycles, let q ≥ 3, and let G be an instance of
a K5-free 3-packing of B ∪ Cq. If there are three independent edges e1, e2, and e3 on
Cq in the black, the blue, and the red copy of B ∪ Cq, then there is a K5-free 3-packing
of B ∪ Cq+1.

Proof. Let e1 = x1x2, e2 = y1y2, and e3 = z1z2. Let w be a new vertex. Replace
edges x1x2, y1y2, z1z2 with edges x1w, wx2, y1w, wy2, z1w, wz2. The new graph G′ is
a 3-packing of C3 ∪ Cq+1. Moreover, since no edges were added between the vertices
of V (G), the 5-clique, if there is one, contains w. Let there be a 5-clique A containing
w in G′. This clique contains four neighbors of w, and, therefore, it contains two
neighbors of w which were adjacent in G but are not adjacent in G′; this, however,
contradicts the fact that A is a clique.

Note that, instead of adding one new vertex, it is possible to add k vertices at
once, if there are k pairwise edge-disjoint matchings, each consisting of three edges
of G lying on Cq in the black, the blue, and the red subgraph of G, respectively. We
will use this fact later.

Consider first the 3-packing of C3 ∪ C11 in Figure 4; note that this graph is K5-free,
which can be checked using computer. We now show how to extend the 3-packing in
Figure 4 to a K5-free 3-packing of C3 ∪ C11+4t for some positive integer t. Denote
by G the graph in Figure 4. Let G′ be a graph obtained from G after removing edges
v3v4, v3v12, v4v5, v4v10, v5v9, v8v9, v8v13, v9v10 (dashed edges in Figure 4), adding new
vertices ai, bi, ci, di for i ∈ {1, . . . , t}, and adding edges of the (black) paths v3(ai)t

i=1v9,
v5(bi)t

i=1v4, v10(ci)t
i=1v9 and v8(di)t

i=1v9, (blue) paths v10(aici)t
i=1v4 and v5(dibi)t

i=1v9,
and (red) paths v3(biai)t

i=1v12 and v8(cidi)t
i=1v13. For an overview of the added part,

see Figure 5.
In the following, we refer to vertices from {v1, . . . , v14} as old vertices, and other

vertices of G′ as new vertices.
It follows from the construction that G′ is a 3-packing of C3 ∪ C11+4t, however, the

absence of K5 in G′ is not clear. Therefore, suppose to the contrary that there is a copy
of K5 in G′. Let H be a subgraph of G′ induced on new vertices and their neighbors (see
Figure 5). Note that no edge between two old vertices was added in the construction;
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hence, if there is a clique on five vertices, it contains at least one new vertex. Thus, each
5-clique in G′ is a 5-clique in H. Note also that H − a1 is 3-degenerate (consider for
example the ordering v12, v13, v3, v10, v8, v5, c1, d1, . . . , ct, dt, v9, b1, a2, b2, . . . at, bt, v4);
hence, if there is a 5-clique in H, then it contains a1. However, a1 and its neighbors
induce a planar graph, see Figure 6. Hence, there is no 5-clique in G.

Using Observation 4.1 for all three (pairwise edge-disjoint) matchings
v1v3, v6v11, v7v8, v1v5, v6v13, v10v11, and v1v11, v3v10, v9v12 at once, we get that there
is a K5-free 3-packing of C3 ∪ C11+4t+q for every nonnegative integer t and every
q ∈ {0, 1, 2, 3}. This covers all the cases of 3-packings of C3 ∪ Cx, x ≥ 11. Moreover,
such a construction does not remove any of the edges of the initial black, blue, or
red copy of C3; this will be useful to extend created K5-free 3-packings of C3 ∪ Cx

to K5-free 3-packings of Cy ∪ Cx for y ∈ {4, 5, 6}. To obtain a 3-packing of C4 ∪ Cx,
apply Observation 4.1 for B = Cx, q = 4, e1 = v12v13, e2 = v2v11, and e3 = v4v14; for
later use, denote the newly added vertex by w1.

Note that there are no larger sets of matchings of desired properties in the 3-packing
of C3 ∪ Cx that could be used to extend them to a 3-packing of C5 ∪ Cx or C6 ∪ Cx

at once. However, we can do it in steps. Observe that, in the created 3-packing of
C4 ∪ Cx, the black edge w1v13, the blue edge v11v12, and the red edge v2v14 form
a matching, and we can make use of Observation 4.1 to obtain a K5-free 3-packing of
C5 ∪ Cx; denote the newly added vertex by w2 (see Figure 7). To obtain a 3-packing
of C6 ∪ Cx, simply repeat the previous step for edges v13v14, v11w2, v2v4.

Finally, we show how to obtain a K5-free 3-packing of C3 ∪ C3 ∪ Cx for x ≥ 11.
The process is similar to the case of K5-free 3-packings of C3 ∪ Cx. We start with the
initial 3-packing G of C3 ∪ C3 ∪ C11 displayed in Figure 8. Using a computer check,
one can find that such a 3-packing is K5-free (in this case, the size of the maximum
clique is three).

v1
v2

v3

v4

v5

v6
v7

v8

v9

v10

v11

v12

v13v14

Fig. 4. K5-free 3-packing of C3 ∪ C11
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v10 v3
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a2

at−1

at

v4

bt

bt−1

b2
b1

v5v8
d1

d2

dt−1

dt

v9

ct

ct−1

c2

c1

v13v12

Fig. 5. The subgraph H of the K5-free 3-packing of C3 ∪ C11+4t induced
on 4t added vertices and their neighbors. Dashed edges are newly added edges,

full edges are old edges

v12

b1

v4

a1

v3v10

c1c1

v10 v3

a1

a2

b2

b1

Fig. 6. The subgraph induced on N(a1) ∪ {a1} for t ≥ 2 (left) and t = 1 (right)
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v14 v13

v12

v11v2

v4

v14 v13

v12

v11v2

v4

w1

w1

v14 v13

v12

v11

w2

v2

v4

Fig. 7. Extensions of monochromatic triangles. Dashed edges are edges of a matching
for which Observation 4.1 is used

v1
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v3

v4

v5

v6v7

v8

v9

v10

v11

v12
v13

v14
v15

v16

v17

Fig. 8. K5-free 3-packing of C3 ∪ C3 ∪ C11

We show how to extend G to a K5-free 3-packing of C3 ∪ C3 ∪ C11+4t for some
positive integer t, using a similar approach as previously. Let G′ be a graph obtained
from G by adding 4t new vertices, namely ai, bi, ci, di for i ∈ {1, . . . , t}, removing
the edges v3v4, v3v10, v4v5, v4v9, v5v12, v9v10, v9v17, v10v11 (dashed edges in Figure 8),
and adding (black) paths v11(ai)t

i=1v10, v3(bi)t
i=1v4, v9(ci)t

i=1v10, and v5(di)t
i=1v4,

(blue) paths v11(biai)t
i=1v4 and v5(cidi)t

i=1v10, and (red) paths v9(aici)t
i=1v17 and

v5(bidi)t
i=1v12 (see Figure 9).

Clearly, the presented construction creates a 3-packing of C3 ∪C3 ∪C11+4t. Suppose
that a 5-clique A was created in the process. Since no edge between two old vertices
(that is, the vertices from {v1, . . . , v17}) was added, at least one of the vertices of A is
a new vertex. Hence, the 5-clique is present in a subgraph H induced on new vertices
and their neighbors, see Figure 9.
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v11 v3
b1

b2

bt−1

bt

v4

dt

dt−1

d2
d1

v5v9

c1

c2

ct−1

ct

v10

at

at−1

a2

a1

v12v17

Fig. 9. The subgraph H induced on new vertices and their neighborhood in the
K5-free 3-packing of C3 ∪ C3 ∪ C11+4t. Dashed edges are newly added edges

Vertices v12 and v17 are of degree two in H, and the vertex v3 is of degree three
in H, hence, none of them is in A.

Vertices v4, v9, v10 and v11 are of degree four in H. Thus, if any of them is
contained in the 5-clique A, then all its neighbors are from A; however, for each of
these vertices, there are two of its neighbors that are not adjacent. Namely, for v9, the
vertices v5 and v11 are not adjacent, for v11, the vertices v3 and v9 are not adjacent,
and, for v4 and v10, the vertices at and dt are not adjacent. Since the degree of v5
in H is five and at least two of its neighbors are not from the 5-clique A (namely
v3 and v9), we get that v5 /∈ A. Hence, A contains only new vertices. However, the
subgraph of G′ induced on new vertices is 3-degenerate (consider the vertex ordering
b1, a1, b2 . . . , at, c1, d1, c2, . . . , dt) and, therefore, it does not contain a 5-clique.
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Now, we show how to extend the constructed K5-free 3-packing of C3 ∪C3 ∪C11+4t

to a K5-free 3-packing of C3 ∪ C3 ∪ C11+4t+q for q ∈ {1, 2, 3}. In all cases,
use Observation 4.1 for three (pairwise edge-disjoint) matchings v1v2, v14v15, v3v5,
v2v3, v6v15, v9v11, and v6v7, v5v8, v9v17. This completes the proof in case of five partic-
ular families of 2-factors.

5. REMAINING SMALL CASES

This section contains the discussion on the uniqueness of 3-packings of small 2-factors
which were not treated by general constructions in Section 4. First, note that the
3-packing of 3C3 is unique, as it corresponds to Steiner triple system STS(9) on nine
points (equivalently, to the affine plane of order three), which is unique. For the
remaining 46 small 2-factors, Table 1 (Appendix) contains description of two distinct
3-packings of particular 2-factors; each of three 2-factors is presented as a collection of
sequences of vertices of its cycles. Moreover, we present two distinct 3-packings of these
2-factors for which the Oberwolfach problem has no solution in Figures 10, 11 and 12.

For computer-assisted finding of these distinct 3-packings, we used Wolfram Math-
ematica computer algebra system [17] with its graph theory procedures. About
the half of cases was solved using the following strategy: considering a 2-factor
H ∼= Cn1 ∪ . . . ∪ Cnk

, we first removed from the complete graph Kn1+...+nk
the cycles

(1, . . . , n1), (n1+1, n1+2, . . . , n1+n2), . . . , (n1+. . .+nk−1+1, . . . , n1+n2+. . .+nk). In
the resulting graph G1, we were looking for several distinct subgraphs isomorphic to H
(using the procedure FindIsomorphicSubgraph[ G , H , p ] which allows to find
either all, or at most p distinct copies of H in G). Among the graphs resulted from
removing these subgraphs from G1, we were looking for two nonisomorphic graphs
G′

2, G′′
2 , and, in them, we again looked for distinct subgraphs isomorphic to H. Finally,

in two collections of graphs obtained from G′
2, G′′

2 by third removal of isomorphic
copies of H, we were able to find two nonisomorphic graphs; their complements yielded
the desired distinct 3-packings.
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Fig. 10. Two distinct 3-packings of C4 ∪ C5
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Fig. 11. Two distinct 3-packings of 2C3 ∪ C5
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Fig. 12. Two distinct 3-packings of 4C3

We have to notice that this strategy failed when k = 3, n1 ≥ 4, n2 ≥ 5 and, also,
when k ≥ 4: the procedure FindIsomorphicSubgraph[ G1 , H , p ] was able to
find only at most three distinct copies of H in G1 (higher values of p resulted in
computation crash), and further attempts to look for copies of H in G′

2, G′′
2 have

led to computation crash or to isomorphic graphs. To overcome these obstacles, we
have generated, for each of the remaining cases, a collection of distinct 2-packings of
H using the code in Python (which took a fixed 2-factor, then renamed its vertices
using a random permutation to obtain another 2-factor with the same cycle structure,
and then checked whether these two 2-factors are edge disjoint and forming together
a 4-regular graph). These 2-packings of H were first removed from Kn1+...+nk

and,
in each of the obtained graphs, a single third copy of H was searched for (again
using FindIsomorphicSubgraph[] procedure). Among the graphs resulted from this
removal, we searched for a pair of nonisomorphic ones (again, their complements
yielded the desired 3-packings). More details and the corresponding code can be found
in Appendix.

Acknowledgements
This work was supported by the Slovak Research and Development Agency under the
contract No. APVV-23-0191 (Madaras, Onderko) and by the Science Grant Agency –
project VEGA 1/0574/21 (Madaras, Onderko).



96 Igor Grzelec, Tomáš Madaras, and Alfréd Onderko

REFERENCES

[1] P. Adams, D. Bryant, Two-factorisations of complete graphs of orders fifteen and
seventeen, Australas. J. Comb. 35 (2006), 113–118.

[2] M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. London
Math. Soc. (2) (1993), 39–51.

[3] B. Bollobás, S.E. Eldridge, Packings of graphs and applications to computational
complexity, J. Combin. Theory Ser. B 25 (1978), 105–124.

[4] D. Burns, S. Schuster, Every (p, p − 2) graph is contained in its complement, J. Graph
Theory 1 (1977), 277–279.

[5] D. Burns, S. Schuster, Embedding (n, n − 1) graphs in their complements, Israel J. Math.
30 (1978), 313–320.

[6] C.J. Colbourn, J.H. Dinitz (eds), The CRC Handbook of Combinatorial Designs, 2nd
ed., CRC Press, Boca Raton, 2006.

[7] M. Dean, On Hamilton cycle decomposition of 6-regular circulant graphs, Graphs Combin.
22 (2006), 331–340.

[8] A. Deza, F. Franek, W. Hua, M. Meszka, A. Rosa, Solutions to the Oberwolfach problem
for orders 18 to 40, J. Comb. Math. Comb. Comput. 74 (2010), 95–102.

[9] I. Grzelec, M. Pilśniak, M. Woźniak, A note on uniquely embeddable 2-factors, Appl.
Math. Comput. 468 (2024), 128505.

[10] A. Hagberg, P. Swart, D. Schult, Exploring network structure, dynamics, and function
using NetworkX (No. LA-UR-08–05495; LA-UR-08–5495). Los Alamos National
Lab.(LANL), 2008, Los Alamos, NM (United States).

[11] C. Heuberger, On planarity and colorability of circulant graphs, Discrete Math. 268
(2003), 153–169.

[12] A.J.W. Hilton, M. Johnson, Some results on the Oberwolfach problem, J. London Math.
Soc. 64 (2001), 513–522.

[13] M. Meszka, R. Nedela, A. Rosa, Circulants and the chromatic index of Steiner triple
systems, Math. Slovaca 56 (2006) 371–378.

[14] J. Otfinowska, M. Woźniak, A Note on Uniquely Embeddable Forests, Discuss. Math.
Graph Th. 33 (2013), no. 1, 193–201.

[15] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25
(1978), 295–302.

[16] H. Wang, N. Sauer, Packing three copies of a tree into a complete graph, European J.
Combin. 14 (1993), 137–142.

[17] Wolfram Research, Inc., Mathematica, Version 14.1, Champaign, IL (2024).

[18] M. Woźniak, Packing of graphs, Diss. Math. 362 (1997), pp. 78.

[19] M. Woźniak, A note on uniquely embeddable graphs, Discuss. Math. Graph Theory 18
(1998), 15–21.



On uniqueness of packing of three copies of 2-factors 97

[20] M. Woźniak, Packing of graphs and permutation – a survey, Discrete Math. 276 (2004),
379–391.

[21] M. Woźniak, A.P. Wojda, Triple placement of graphs, Graphs Combin. 9 (1993), 85–91.

[22] H.P. Yap, Packing of graphs – a survey, Discrete Math. 72 (1988), 395–404.

APPENDIX

In this section, we present parts of the code and results of finding distinct pack-
ings for the finite number of small 2-factors considered in Section 5. As men-
tioned in that section, we mostly used Wolfram Mathematica built-in functions
FindIsomorphicSubgraph[ G1 , H , p ]. The code for a particular case of two
distinct 3-packing of C4 ∪ C4 ∪ C5 is listed here:
G = Graph[CompleteGraph[13], VertexLabels -> "Name"];

G1 = EdgeDelete[G, {
1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3,
3 \[UndirectedEdge] 4, 4 \[UndirectedEdge] 1,
5 \[UndirectedEdge] 6, 6 \[UndirectedEdge] 7,
7 \[UndirectedEdge] 8, 8 \[UndirectedEdge] 5,
9 \[UndirectedEdge] 10, 10 \[UndirectedEdge] 11,
11 \[UndirectedEdge] 12, 12 \[UndirectedEdge] 13,
13 \[UndirectedEdge] 9
}];

list445inG1 = FindIsomorphicSubgraph[G1,
GraphDisjointUnion[CycleGraph[4],CycleGraph[4],CycleGraph[5]]
];

G2 = EdgeDelete[G1, EdgeList[list445inG1[[1]]]];

list445inG2 = FindIsomorphicSubgraph[G2,
GraphDisjointUnion[CycleGraph[4],CycleGraph[4],CycleGraph[5]],
50];

t = False;
For[i = 1, i <= 50 && Not[t], i++,

For[j = i + 1, j <= 50 && Not[t], j++,
If[Not[IsomorphicGraphQ[listG2[[i]], listG2[[j]]]],

Print[i, "␣", j, "␣", listG2[[i]], "␣", listG2[[j]]];
t = True]

]
]

For cases different from C4 ∪ C4 ∪ C5, the definition of G1 and the length of each
CycleGraph in the definition of list445inG2 need to be adjusted.

We used the above code to find 50 different subgraphs of G2 isomorphic to the
given 2-factor, as seen in the provided code on the line when list445inG2 is initialized.
However, this approach mostly failed in some considered cases (probably due to sizes
of considered graphs) and the function resulted only in the list of 3 subgraphs, which
was insufficient for our search.
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To overcome this obstacle, we constructed an easy Python code to generate
(usually 50, but in some cases fewer) nonisomorphic 2-packings of given 2-factors. The
code for such a generation is provided below. Note that G1 is the original 2-factor given
as an instance of Graph from NetworkX package [10] (with the vertices denoted by
0, . . . , n−1). This method returns (in most cases) the list of 50 (random) nonisomorphic
complements of 2-packings (represented as strings in Graph6 graph format); this list
is then exported to a .g6 file which can be imported as a list of graphs in Wolfram
Mathematica. After that, the third copy of the given 2-factor was found in these
graphs using FindIsomorphicSubgraph[] in Wolfram Mathematica, as well as the
checking the resulting 3-packings for their nonisomorphism.

import networkx as nx
import numpy as np
import time

def two_packing_generator(G1):
n = nx.number_of_nodes(G1)

generated = []
generated_g6 = []

timeout = time.time() + 60
while len(generated) < 50 and time.time() < timeout:

G2 = G1.copy()
p = dict(zip(range(n), list(np.random.permutation(n))))
G2 = nx.relabel_nodes(G2, p)

if any([G2.has_edge(*e) for e in G1.edges()]):
# graphs are not edge-disjoint
continue

R = nx.complete_graph(n)
R.remove_edges_from(list(G2.edges()) + list(G1.edges()))

if any([nx.is_isomorphic(R, G) for G in generated]):
# R is isomorphic to something we already have
continue

generated += [R]
generated_g6 += [str(nx.to_graph6_bytes(R))

.removeprefix("b’>>graph6<<")

.removesuffix("\\n\’")

.replace("\\\\", "\\")]

return generated_g6

The result of this code is a table which provides, for each considered 2-factor, two
its distinct 3-packings (the individual cycles of these three 2-factors are represented
by sequences of vertices).
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Table 1
Two distinct 3-packings of each of 46 small 2-factors

2-factor First 3-packing Second 3-packing
C3 ∪ C6 (1, 2, 3), (4, 5, 6, 7, 8, 9) (1, 2, 3), (4, 5, 6, 7, 8, 9)

(3, 4, 6), (1, 8, 2, 5, 7, 9) (3, 4, 6), (1, 5, 9, 7, 2, 8)
(2, 6, 9), (1, 4, 8, 5, 3, 7) (2, 6, 9), (1, 4, 8, 5, 3, 7)

C3 ∪ C7 (1, 2, 3), (4, 5, 6, 7, 8, 9, 10) (1, 2, 3), (4, 5, 6, 7, 8, 9, 10)
(1, 4, 6), (2, 5, 3, 8, 10, 7, 9) (1, 4, 6), (2, 5, 7, 9, 3, 8, 10)
(1, 5, 7), (2, 4, 8, 6, 9, 3, 10) (1, 5, 8), (2, 4, 3, 7, 10, 6, 9)

C3 ∪ C8 (1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11) (1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11)
(1, 4, 6), (2, 5, 3, 7, 9, 11, 8, 10) (1, 4, 6), (2, 5, 3, 8, 10, 7, 11, 9)
(1, 5, 7), (2, 8, 3, 9, 4, 10, 6, 11) (1, 5, 7), (2, 4, 8, 11, 3, 9, 6, 10)

C3 ∪ C9 (1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12) (1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12)
(1, 4, 6), (2, 5, 3, 7, 9, 11, 8, 10, 12) (1, 4, 6), (2, 5, 3, 7, 9, 11, 8, 12, 10)
(1, 5, 7), (2, 4, 8, 12, 9, 3, 10, 6, 11) (1, 5, 7), (2, 4, 8, 10, 3, 9, 12, 6, 11)

C3 ∪ C10 (1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12, 13) (1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
(1, 4, 6), (2, 5, 3, 7, 9, 11, 8, 12, 10, 13) (1, 4, 6), (2, 5, 3, 7, 9, 11, 8, 13, 10, 12)
(1, 5, 7), (2, 4, 3, 8, 10, 6, 11, 13, 9, 12) (1, 5, 7), (2, 4, 3, 6, 10, 8, 12, 9, 13, 11)

C4 ∪ C5 (1, 2, 3, 4), (5, 6, 7, 8, 9) (1, 2, 3, 4), (5, 6, 7, 8, 9)
(1, 3, 5, 7), (2, 4, 8, 6, 9) (1, 3, 5, 7), (2, 6, 8, 4, 9)
(1, 5, 2, 8), (3, 6, 4, 7, 9) (1, 5, 2, 8), (3, 6, 4, 7, 9)

C4 ∪ C6 (1, 2, 3, 4), (5, 6, 7, 8, 9, 10) (1, 2, 3, 4), (5, 6, 7, 8, 9, 10)
(1, 3, 5, 7), (2, 4, 8, 10, 6, 9) (1, 3, 5, 7), (2, 6, 8, 10, 4, 9)
(1, 5, 2, 8), (3, 6, 4, 9, 7, 10) (1, 5, 2, 8), (3, 9, 6, 4, 7, 10)

C4 ∪ C7 (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11) (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11)
(1, 3, 5, 7), (2, 4, 6, 9, 11, 8, 10) (1, 3, 5, 7), (2, 4, 8, 10, 6, 9, 11)
(1, 5, 2, 8), (3, 6, 10, 4, 9, 7, 11) (1, 5, 2, 6), (3, 8, 11, 4, 9, 7, 10)

C4 ∪ C8 (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12) (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12)
(1, 3, 5, 7), (2, 4, 6, 8, 10, 12, 9, 11) (1, 3, 5, 7), (2, 4, 6, 9, 11, 8, 10, 12)
(1, 5, 2, 6), (3, 9, 4, 10, 7, 11, 8, 12) (1, 5, 2, 6), (3, 8, 12, 9, 4, 10, 7, 11)

C4 ∪ C9 (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12, 13) (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12, 13)
(1, 3, 5, 7), (2, 4, 6, 8, 10, 12, 9, 11, 13) (1, 3, 5, 7), (2, 4, 6, 8, 10, 12, 9, 13, 11)
(1, 5, 2, 6), (3, 7, 9, 13, 10, 4, 11, 8, 12) (1, 5, 2, 6), (3, 7, 9, 11, 4, 10, 13, 8, 12)

C4 ∪ C10 (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12, 13, 14) (1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
(1, 3, 5, 7), (2, 4, 6, 8, 10, 12, 9, 13, 11, 14) (1, 3, 5, 7), (2, 4, 6, 8, 10, 12, 9, 14, 11, 13)
(1, 5, 2, 6), (3, 7, 4, 9, 11, 8, 12, 14, 10, 13) (1, 5, 2, 6), (3, 7, 4, 8, 11, 9, 13, 10, 14, 12)

C5 ∪ C5 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10)
(1, 3, 5, 6, 8), (2, 4, 9, 7, 10) (1, 3, 5, 2, 6), (4, 8, 10, 7, 9)
(1, 4, 6, 2, 7), (3, 8, 10, 5, 9) (1, 4, 7, 2, 10), (3, 6, 8, 5, 9)

C5 ∪ C6 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11)
(1, 3, 5, 2, 4), (6, 8, 10, 7, 11, 9) (1, 3, 5, 2, 6), (4, 7, 9, 11, 8, 10)
(1, 6, 2, 7, 9), (3, 8, 4, 10, 5, 11) (1, 4, 2, 7, 11), (3, 8, 5, 9, 6, 10)

C5 ∪ C7 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12)
(1, 3, 5, 2, 4), (6, 8, 10, 7, 12, 9, 11) (1, 3, 5, 2, 4), (6, 8, 11, 7, 9, 12, 10)
(1, 6, 2, 7, 9), (3, 8, 4, 10, 12, 5, 11) (1, 6, 2, 7, 10), (3, 8, 4, 9, 11, 5, 12)

C5 ∪ C8 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13)
(1, 3, 5, 2, 4), (6, 8, 10, 7, 11, 13, 9, 12) (1, 3, 5, 2, 4), (6, 8, 10, 7, 12, 9, 13, 11)
(1, 6, 2, 7, 9), (3, 8, 4, 11, 5, 12, 10, 13) (1, 6, 2, 7, 9), (3, 8, 4, 11, 5, 12, 10, 13)

C5 ∪ C9 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13, 14) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13, 14)
(1, 3, 5, 2, 4), (6, 8, 10, 7, 9, 12, 14, 11, 13) (1, 3, 5, 2, 4), (6, 8, 10, 7, 11, 13, 9, 14, 12)
(1, 6, 2, 7, 11), (3, 8, 4, 9, 13, 5, 12, 10, 14) (1, 6, 2, 7, 9), (3, 8, 4, 11, 14, 5, 12, 10, 13)

C5 ∪ C10 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13, 14, 15) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
(1, 3, 5, 2, 4), (6, 8, 10, 7, 9, 11, 13, 15, 12, 14) (1, 3, 5, 2, 4), (6, 8, 10, 7, 9, 12, 14, 11, 15, 13)
(1, 6, 2, 7, 11), (3, 8, 4, 12, 5, 13, 9, 14, 10, 15) (1, 6, 2, 7, 11), (3, 8, 4, 9, 13, 5, 12, 15, 10, 14)

C6 ∪ C6 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12) (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12)
(1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 11) (1, 3, 5, 2, 4, 7), (6, 9, 11, 8, 12, 10)
(1, 4, 6, 2, 7, 9), (3, 10, 5, 11, 8, 12) (1, 4, 6, 2, 7, 11), (3, 8, 10, 5, 9, 12)

C6 ∪ C7 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13) (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13)
(1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 11, 13) (1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 13, 11)
(1, 4, 6, 2, 7, 9), (3, 10, 13, 5, 11, 8, 12) (1, 4, 6, 2, 7, 9), (3, 10, 13, 5, 11, 8, 12)

C6 ∪ C8 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14) (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14)
(1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 13, 11, 14) (1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 14, 11, 13)
(1, 4, 6, 2, 7, 5), (3, 9, 11, 8, 12, 14, 10, 13) (1, 4, 6, 2, 7, 5), (3, 8, 11, 9, 13, 10, 14, 12)

C6 ∪ C9 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15) (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15)
(1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 13, 15, 11, 14) (1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 14, 11, 13, 15)
(1, 4, 6, 2, 7, 5), (3, 8, 11, 9, 14, 12, 15, 10, 13) (1, 4, 6, 2, 7, 5), (3, 8, 11, 9, 13, 10, 14, 12, 15)

C6 ∪ C10 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15, 16) (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
(1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 11, 14, 16, 13, 15) (1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 13, 15, 11, 14, 16)
(1, 4, 6, 2, 7, 5), (3, 8, 11, 13, 9, 14, 10, 15, 12, 16) (1, 4, 6, 2, 7, 5), (3, 8, 11, 9, 14, 12, 15, 10, 13, 16)

2C3 ∪ C4 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10)
(1, 4, 7), (2, 5, 8), (3, 9, 6, 10) (1, 4, 7), (2, 5, 9), (3, 8, 6, 10)
(1, 5, 9), (2, 4, 10), (3, 7, 6, 8) (1, 5, 8), (2, 4, 10), (3, 7, 6, 9)

2C3 ∪ C5 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11)
(1, 4, 7), (2, 5, 8), (3, 9, 11, 6, 10) (1, 4, 7), (2, 5, 9), (3, 8, 10, 6, 11)
(1, 5, 9), (2, 4, 10), (3, 7, 6, 8, 11) (1, 5, 8), (2, 4, 11), (3, 9, 6, 7, 10)
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Table 1 cont.
2-factor First 3-packing Second 3-packing

2C3 ∪ C6 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12)
(1, 4, 7), (2, 5, 8), (3, 6, 10, 12, 9, 11) (1, 4, 7), (2, 5, 8), (3, 9, 11, 6, 10, 12)
(1, 5, 9), (2, 4, 10), (3, 7, 6, 11, 8, 12) (1, 5, 9), (2, 4, 10), (3, 6, 12, 8, 11, 7)

2C3 ∪ C7 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13)
(1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 12) (1, 4, 7), (2, 5, 8), (3, 6, 10, 12, 9, 13, 11)
(1, 5, 9), (2, 4, 10), (3, 7, 11, 6, 12, 8, 13) (1, 5, 9), (2, 4, 10), (3, 7, 11, 6, 12, 8, 13)

2C3 ∪ C8 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14)
(1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 12, 14) (1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 14, 12)
(1, 5, 9), (2, 4, 10), (3, 7, 11, 14, 6, 12, 8, 13) (1, 5, 9), (2, 4, 10), (3, 7, 11, 14, 6, 12, 8, 13)

2C3 ∪ C9 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15)
(1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 14, 12, 15) (1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 15, 12, 14)
(1, 5, 9), (2, 4, 10), (3, 7, 6, 12, 8, 13, 15, 11, 14) (1, 5, 9), (2, 4, 10), (3, 7, 6, 12, 8, 14, 11, 15, 13)

2C3 ∪ C10 (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15, 16) (1, 2, 3), (4, 5, 6), (7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
(1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 14, 16, 12, 15) (1, 4, 7), (2, 5, 8), (3, 6, 9, 11, 13, 10, 15, 12, 14, 16)
(1, 5, 9), (2, 4, 10), (3, 7, 6, 8, 12, 14, 11, 15, 13, 16) (1, 5, 9), (2, 4, 10), (3, 7, 6, 11, 14, 8, 12, 16, 13, 15)

C3 ∪ 2C4 (1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11) (1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)
(1, 4, 6), (2, 5, 8, 10), (3, 7, 9, 11) (1, 4, 6), (2, 5, 8, 10), (3, 9, 7, 11)
(1, 5, 7), (2, 8, 3, 9), (4, 10, 6, 11) (1, 5, 7), (2, 4, 9, 11), (3, 8, 6, 10)

C3 ∪ C4 ∪ C5 (1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11, 12) (1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11, 12)
(1, 4, 6), (2, 5, 3, 7), (8, 10, 12, 9, 11) (1, 4, 6), (2, 5, 3, 8), (7, 10, 12, 9, 11)
(1, 5, 8), (2, 9, 4, 10), (3, 6, 11, 7, 12) (1, 5, 7), (2, 9, 3, 10), (4, 8, 11, 6, 12)

C3 ∪ C4 ∪ C6 (1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11, 12, 13) (1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11, 12, 13)
(1, 5, 7), (2, 4, 8, 12), (3, 9, 11, 6, 10, 13) (1, 5, 7), (2, 8, 3, 11), (4, 9, 13, 6, 10, 12)
(1, 4, 6), (2, 5, 3, 7), (8, 10, 12, 9, 13, 11) (1, 4, 6), (2, 5, 3, 7), (8, 10, 13, 11, 9, 12)

3C4 (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12) (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12)
(1, 3, 5, 7), (2, 4, 9, 11), (6, 8, 10, 12) (1, 3, 5, 7), (2, 4, 9, 11), (6, 10, 8, 12)
(1, 5, 2, 6), (3, 9, 7, 10), (4, 11, 8, 12) (1, 5, 2, 6), (3, 9, 8, 11), (4, 7, 10, 12)

2C4 ∪ C5 (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12, 13) (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12, 13)
(1, 3, 5, 7), (2, 4, 6, 8), (9, 11, 13, 10, 12) (1, 3, 5, 7), (2, 4, 6, 8), (9, 11, 13, 10, 12)
(1, 5, 2, 9), (3, 10, 6, 11), (4, 7, 12, 8, 13) (1, 5, 2, 9), (3, 10, 7, 11), (4, 8, 12, 6, 13)

2C4 ∪ C6 (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12, 13, 14) (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12, 13, 14)
(1, 6, 9, 12), (4, 11, 8, 14), (2, 5, 3, 13, 10, 7) (2, 12, 3, 13), (4, 6, 10, 7), (1, 5, 14, 11, 9, 8)
(1, 3, 6, 8), (2, 4, 5, 9), (7, 12, 10, 14, 11, 13) (1, 3, 5, 7), (2, 4, 8, 10), (6, 11, 13, 9, 12, 14)

C4 ∪ 2C5 (1, 2, 3, 4), (5, 6, 7, 8, 9), (10, 11, 12, 13, 14) (1, 2, 3, 4), (5, 6, 7, 8, 9), (10, 11, 12, 13, 14)
(2, 9, 4, 14), (1, 3, 12, 8, 5), (6, 10, 7, 13, 11) (1, 3, 9, 11), (2, 5, 14, 7, 12), (4, 6, 10, 8, 13)
(1, 6, 2, 7), (3, 5, 4, 8, 11), (9, 13, 10, 12, 14) (1, 5, 3, 6), (2, 4, 7, 9, 14), (8, 11, 13, 10, 12)

C4 ∪ C5 ∪ C6 (1, 2, 3, 4), (5, 6, 7, 8, 9), (10, 11, 12, 13, 14, 15) (1, 2, 3, 4), (5, 6, 7, 8, 9), (10, 11, 12, 13, 14, 15)
(3, 14, 8, 15), (1, 10, 2, 7, 13), (4, 5, 11, 6, 9, 12) (2, 6, 12, 7), (1, 10, 14, 5, 13), (3, 9, 15, 8, 4, 11)
(1, 3, 5, 7), (2, 4, 6, 8, 11), (9, 10, 13, 15, 12, 14) (1, 3, 5, 7), (2, 4, 6, 8, 10), (9, 11, 13, 15, 12, 14)

3C5 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15)
(1, 7, 11, 2, 14), (3, 5, 9, 6, 15), (4, 10, 12, 8, 13) (1, 7, 5, 2, 15), (3, 6, 13, 4, 8), (9, 12, 10, 11, 14)
(1, 3, 6, 2, 4), (5, 7, 9, 11, 8), (10, 13, 15, 12, 14) (1, 3, 5, 6, 4), (2, 7, 9, 11, 8), (10, 13, 15, 12, 14)

2C5 ∪ C6 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15, 16) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15, 16)
(1, 4, 16, 10, 12), (2, 7, 9, 5, 8), (3, 14, 6, 13, 11, 15) (1, 10, 15, 6, 12), (2, 7, 4, 14, 16), (3, 5, 13, 9, 11, 8)
(1, 3, 5, 2, 6), (4, 7, 10, 8, 11), (9, 12, 14, 16, 13, 15) (1, 3, 6, 2, 4), (5, 7, 9, 12, 8), (10, 14, 11, 15, 13, 16)

C5 ∪ 2C6 (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11), (12, 13, 14, 15, 16, 17) (1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11), (12, 13, 14, 15, 16, 17)
(4, 10, 14, 16, 13), (1, 8, 6, 15, 9, 17), (2, 7, 12, 3, 5, 11) (1, 10, 2, 6, 15), (3, 7, 16, 14, 11, 9), (4, 8, 13, 17, 5, 12)
(1, 3, 6, 2, 4), (5, 7, 9, 11, 8, 13), (10, 15, 17, 14, 12, 16) (1, 4, 2, 5, 3), (6, 8, 10, 7, 9, 13), (11, 15, 17, 14, 12, 16)

3C6 (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12), (13, 14, 15, 16, 17, 18) (1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12), (13, 14, 15, 16, 17, 18)
(1, 5, 14, 7, 3, 13), (2, 12, 18, 10, 6, 16), (4, 8, 11, 17, 9, 15) (1, 4, 2, 17, 10, 12), (3, 5, 8, 18, 16, 13), (6, 9, 11, 15, 7, 14)
(1, 3, 5, 2, 4, 7), (6, 8, 10, 12, 9, 11), (13, 15, 17, 14, 18, 16) (1, 3, 6, 2, 5, 7), (4, 8, 10, 13, 9, 12), (11, 16, 14, 17, 15, 18)

4C3 (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12) (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12)
(1, 5, 8), (2, 4, 12), (3, 9, 10), (6, 7, 11) (1, 5, 8), (2, 7, 12), (3, 6, 10), (4, 9, 11)
(1, 4, 7), (2, 5, 10), (3, 8, 11), (6, 9, 12) (1, 4, 7), (2, 5, 10), (3, 8, 11), (6, 9, 12)

3C3 ∪ C4 (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12, 13) (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12, 13)
(1, 5, 9), (2, 4, 10), (3, 6, 11), (7, 12, 8, 13) (1, 5, 9), (2, 4, 10), (3, 11, 13), (6, 7, 12, 8)
(1, 4, 7), (2, 5, 8), (3, 10, 12), (6, 9, 11, 13) (1, 4, 7), (2, 5, 8), (3, 10, 12), (6, 11, 9, 13)

3C3 ∪ C5 (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12, 13, 14) (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12, 13, 14)
(2, 9, 10), (3, 6, 12), (4, 7, 14), (1, 5, 13, 8, 11) (1, 4, 12), (2, 7, 10), (5, 9, 11), (3, 8, 14, 6, 13)
(1, 4, 8), (2, 5, 7), (3, 9, 11), (6, 13, 10, 12, 14) (1, 5, 7), (2, 4, 8), (3, 6, 9), (10, 12, 14, 11, 13)

3C3 ∪ C6 (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12, 13, 14, 15) (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12, 13, 14, 15)
(1, 9, 11), (3, 5, 7), (8, 12, 15), (2, 4, 14, 6, 10, 13) (2, 4, 8), (6, 13, 15), (10, 12, 14), (1, 9, 3, 7, 5, 11)
(1, 4, 7), (2, 5, 8), (3, 6, 12), (9, 10, 14, 11, 13, 15) (1, 4, 7), (2, 5, 9), (3, 6, 14), (8, 10, 13, 11, 15, 12)

5C3 (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15) (1, 2, 3), (4, 5, 6), (7, 8, 9), (10, 11, 12), (13, 14, 15)
(1, 4, 7), (2, 10, 13), (3, 6, 14), (5, 8, 11), (9, 12, 15) (1, 4, 7), (2, 5, 8), (3, 12, 15), (6, 10, 13), (9, 11, 14)
(1, 5, 9), (2, 4, 8), (3, 10, 15), (6, 11, 13), (7, 12, 14) (1, 5, 9), (2, 4, 10), (3, 6, 14), (7, 11, 15), (8, 12, 13)



On uniqueness of packing of three copies of 2-factors 101

Igor Grzelec (corresponding author)
grzelec@agh.edu.pl
 https://orcid.org/0000-0002-1011-535X

AGH University of Krakow
Faculty of Applied Mathematics
Department of Discrete Mathematics
al. A. Mickiewicza 30, 30–059 Kraków, Poland

Tomáš Madaras
tomas.madaras@upjs.sk
 https://orcid.org/0000-0003-4565-043X

P.J. Šafárik University
Institute of Mathematics, Faculty of Science
Jesenná 5, 041 54 Košice, Slovak Republic

Alfréd Onderko
alfred.onderko@upjs.sk
 https://orcid.org/0000-0003-4811-3955

P.J. Šafárik University
Institute of Mathematics, Faculty of Science
Jesenná 5, 041 54 Košice, Slovak Republic

Received: March 18, 2024.
Revised: September 21, 2024.
Accepted: October 7, 2024.


