PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality of waters flowing in foothill areas subject to anthropopressure illustrated by the example of the Biała River catchment in southern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The physicochemical parameters of the water of the Biała River and its tributaries were analysed at 11 test points. Some points represented highly urbanized catchment areas while the remaining ones – mixed catchments (with buildings, forest and agricultural areas). The research was conducted from June 2021 to May 2022. Its aim was to identify the pollution of water flowing in developed foothill areas. Basic water quality parameters were determined: C, TDS, CODMn, Fe, Cl-, SO4,2-, PO4,3-, NO3,-, TKN. During the research period, the parameter values at individual points were very variable (variation over time). Differences in values between points (spatial variation) were also noted. Water quality was related to the development of the catchment area – overall pollution expressed as C or TDS values was greater in highly urbanized catchments and in the lower part of the studied area, but individual substances in high concentrations were also observed locally. It was found that the water was contaminated mainly with organic and biogenic substances.
Rocznik
Strony
112--120
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Institute of Engineering Sciences, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • Institute of Engineering Sciences, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • 1. Atlas of the Hydrographic Division of Poland [Atlas Podziału Hydrograficznego Polski]. (2005). IMGW, Warszawa (in Polish).
  • 2. De Mello F.T., Sierra P., Moi D.A., Alonso J., Lucas C., Suárez B., Alvareda E., Alvarez J., Andrade M.S., Arimon L., Urtado L., Piperno A. (2024). Effects of urbanization and accessibility to sanitation services on water quality in urban streams in Uruguay. Environmental Monitoring and Assessment, 196, 185. https://doi.org/10.1007/s10661-024-12365-z
  • 3. Dojlido J.R. (1995). Surface water chemistry [Chemia wód powierzchniowych]. Ekonomia i Środowisko, Białystok (in Polish).
  • 4. Eaton A.D., Clesceri L.S., Greenbeg A.E. (2005). Standard methods for the examination of water and wastewater (19th edn.). American Public Health Association, Washington.
  • 5. Environmental Protection Program for the city of Bielsko-Biała until 2025, taking into account the perspective until 2029 [Program Ochrony Środowiska dla miasta Bielska-Białej do roku 2025 z uwzględnieniem perspektywy do roku 2029]. 2022. UM, Bielsko-Biała, https://bielsko-biala.pl/sites/default/files/inline-files/XLIV_1014_2022_OSE.Kopia%20%281%29.pdf
  • 6. Fondriest Environmental, Inc. (2014). Conductivity, Salinity and Total Dissolved Solids. Fundamentals of Environmental Measurements. https://www.fondriest.com/environmental-measurements/parameters/water-quality/conductivity-salinity-tds/(available June 3, 2024).
  • 7. Fulazzaky M.A., Seong T.W., Masirin M.I.M. (2010). Assessment of water quality status for the Selangor River in Malaysia. Water Air and Soil Pollution, 205, 1–4, 63–77. https://doi.org/10.1007/s11270-009-0056-2
  • 8. Hafsi R., Ouerdachi L., Kriker A.E.O., Boutaghane H. (2016). Assessment of urbanization/impervious effects on water quality in the urban river Annaba (Eastern Algeria) using physicochemical parameters. Water Science and Technology, 74(9), 2051–2059. https://doi.org/10.2166/wst.2016.350
  • 9. Jaguś A., Rzętała M., Rahmonov O., Rzętała M.A., Machowski R. (2012). River water pollution in areas in southern Poland with various types of anthropopressure. Teka Komisji Ochrony i Kształtowania Środowiska Przyrodniczego, 9, 70–79.
  • 10. Lai Q.Y., Ma J., He F., Wei G. (2022). Response model for urban area source pollution and water environmental quality in a river network region. International Journal of Environmental Research and Public Health, 19, 17. https://doi.org/10.3390/ijerph191710546
  • 11. Li G.Y., Li L.Z., Kong M. (2021). Multiple-scale analysis of water quality variations and their correlation with land use in highly urbanized Taihu Basin, China. Bulletin of Environmental Contamination and Toxicology, 106, 1, 218–224. https://doi.org/ 10.1007/s00128-020-02959-x
  • 12. Liu J., Shen Z.Y., Chen L. (2018). Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China. Landscape and Urban Planning, 176, 51–63. https://doi.org/10.1016/j.landurbplan.2018.04.006
  • 13. Marques P., Cunico A. (2023). Integrating the influence of untreated sewage into our understanding of the urban stream syndrome. Freshwater Science, 42(2), 195–203. https://doi.org/10.1086/724823
  • 14. Ordinance of the Minister of Infrastructure of June 25, 2021 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies, as well as environmental quality standards for priority substances [Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych]. 2021. ID: Dz.U.2021.1475 (in Polish).
  • 15. Ouyang T., Zhu Z., Kuang Y. (2006). Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China. Environmental Monitoring and Assessment, 120, 313–325. https://doi.org/10.1007/s10661-005-9064-x
  • 16. Paul J.P., Meyer J.L. (2001). Streams in the urban landscape. Annual Review of Ecology and Systematics, 32, 333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040
  • 17. Rieck L.O., Sullivan S. (2022). Ecological impacts of altered stream hydrogeomorphic characteristics extend beyond the channel boundary: Evidence from urban streams of Columbus, OH, United States. Frontiers in Ecology and Evolution, 10, 817289. https://doi.org/10.3389/fevo.2022.817289
  • 18. Salachna A., Widuch D. (2023). Monitoring of small upland rivers on the example of the Łękawka stream (Bestwina commune, Silesian Voivodeship). Polish Journal of Materials and Environmental Engineering, 5(25), 41–49 (in Polish). https://doi.org/10.53052/pjmee.2023.5.05
  • 19. Salachna A., Kumorek A., Legierska A., Janecki M. (2022). Water quality of the Vistula River and its tributaries in selected municipalities in the Cieszyn district (South Poland). Polish Journal of Materials and Environmental Engineering, 4(24), 41–49 (in Polish). https://doi.org/10.53052/pjmee.2022.4.05
  • 20. Son C.T., Giang N.T.H., Thao T.P., Nui N.H., Lam N.T., Cong V.H. (2020). Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. Journal of Water Supply Research and Technology-AQUA, 69, 2, 160–172. https://doi.org/10.2166/aqua.2020.122
  • 21. Wang Y., Shen J., Yan W., Chen C. (2019). Effects of landscape development intensity on river water quality in urbanized areas. Sustainability, 11(24), 7120. https://doi.org/10.3390/su11247120
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ca05ab8-20b2-4567-a527-61604e1eb0fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.