PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A laboratory study of pressure distribution and residual settlements in wide grading double layer railway ballast under long-term cyclic loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ballast layer has weighty share in the lifecycle costs of railway track. The strict standards and maintenance rules of ballast grading significantly contribute to the ballast costs. One ways to the costs reduction is differential demands to ballast grading for the secondary and low loaded railway lines. Additional one is the different ballast grading over the ballast height. This study presents a full scale laboratory investigation of technical efficiency of such railway ballast under the long-term cyclic loading in comparison with the standard ballast layer. The double layer is presented with standard grading ballast upper layer and bottom sub ballast layer consists of ballast mixture. Pressure distribution under the ballast layer and permanent settlements of the layers are measured during the loading cycles. The reference measurements with standard grading ballast material are carried out. The study shows that initial settlement accumulation of the double layer railway ballast are lower to that of the standard ballast layer. However, the settlements accumulation intensity of the ballast is higher. The analysis of the pressure distribution measurements under the ballast layer and the settlements inside the ballast layer explain the causes of the different settlement accumulation.
Rocznik
Strony
561--578
Opis fizyczny
Bibliogr. 43 poz., il., tab.
Twórcy
autor
  • Technical University of Dresden, Transportation Faculty, Dresden, Germany
autor
  • Technical University of Dresden, Transportation Faculty, Dresden, Germany
  • Lviv branch of Dnipro National University of Railway Transport, Department of the rolling stock and track, Lviv, Ukraine
autor
  • Technical University of Dresden, Transportation Faculty, Dresden, Germany
Bibliografia
  • 1. B. Lichtberger, “Track compendium: formation, permanent way, maintenance, economics”. Hamburg: Eurailpress, 2005.
  • 2. D. Ionescu, “Evaluation of the engineering behaviour of railway ballast”, PHD thesis, University of Wollongong. Faculty of Engineering, University of Wollongong, 2004.
  • 3. C. Calla, “Two layered ballast system for improved performance of railway track”, PhD. Thesis, Coventry University, 2003.
  • 4. G.P. Raymond, “Research on railroad ballast specification and evaluation”, Transportation Research Record 1006: 1-8, 1985
  • 5. P. Gołębiowski, J. Kukulski, “Preliminary study of shaping the railway track geometry in terms of their maintenance costs and capacity”, Archives of Transport 53(1): 115-128, 2020. DOI: 10.5604/01.3001.0014.1787
  • 6. Z. Popović, L. Lazarević, L. Brajović, M. Mićić, N. Mirković, “Improvement recommendations for railway infrastructure maintenance”, E3S Web of Conferences 157:01001, 2020. DOI: 10.1051/e3sconf/202015701001
  • 7. D. Luckey, H. Fritz, D. Legatiuk, K. Dragos, K. Smarsly, “Artificial Intelligence Techniques for Smart City Applications”, Lecture Notes in Civil Engineering 98:3-15, 2021. DOI: 10.1007/978-3-030-51295-8_1
  • 8. A. Kasraei, J. Zakeri, “Effective time interval for railway track geometry inspection”, Archives of Transport 53(1):53-65, 2020. DOI: 10.5604/01.3001.0014.1744
  • 9. D. Kurhan, M. Havrylov, “The Mathematical Support of Machine Surfacing for the Railway Track”, Acta Technica Jaurinensis 13(3):246-267, 2020. DOI: 10.14513/actatechjaur.v13.n3.556.
  • 10. M. Przybylowicz, M. Sysyn, V. Kovalchuk, O. Nabochenko, B. Parneta, “Experimental And Theoretical Evaluation Of Side Tamping Method For Ballasted Railway Track Maintenance”, Transport Problems, Silesian University of Technology 15(3):pp. 93-106, 2020 DOI: 10.21307/tp-2020-036
  • 11. O. Plášek, M. Hruzíková, R. Svoboda, J. Vendel, “Influence of under sleeper pads on track quality”, Akustika 23(1):28-33, 2015.
  • 12. C. Fang, Y. Lee, Y. Lin, L. Lu, P. Chen, “Influence of gravel segregation on gluing solution solidification in a railway ballast”, Acta Geotechnica 12(3):605-614, 2017. DOI: 10.1007/s11440-017-0544-2
  • 13. V. Fontserè, A. Pita, N., Manzo, A. Ausilio, “NEOBALLAST: New High-performance and Long-lasting Ballast for Sustainable Railway Infrastructures”, Transportation Research Procedia 14:1847-1854, 2016. DOI: 10.1016/j.trpro.2016.05.151
  • 14. L. Ižvolt, J. Šestáková, M. Šmalo, “Tendencies in the development of operational quality of ballasted and ballastless track superstructure and transition areas”, IOP Conference Series: Materials Science and Engineering 236(1):012038, 2017. DOI: 10.1088/1757-899X/236/1/012038
  • 15. L. Ižvolt, J. Šestáková, M. Šmalo, “The railway superstructure monitoring in bratislava tunnel no. 1 - Section of ballastless track and its transition areas”, MATEC Web of Conferences 117:00063, 2017. DOI: 10.1051/matecconf/201711700063
  • 16. L. Izvolt, J. Harusinec, M. Smalo, “Optimisation of transition areas between ballastless track and ballasted track in the area of the tunnel turecky vrch”, Communications - Scientific Letters of the University of Zilina 20(3):67-76, 2018.
  • 17. X. Chen, Y. Zhu, D. Cai, G. Xu, T. Dong, “Investigation on interface damage between cement concrete base plate and asphalt concrete waterproofing layer under temperature load in ballastless track”, Applied Sciences (Switzerland) 10(8):2654, 2020. DOI: 10.3390/app10082654
  • 18. T. Abadi, L. Pen, A. Zervos, W. Powrie, “Improving the performance of railway tracks through ballast interventions”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232(2):337-355, 2018. DOI: 10.1177/0954409716671545
  • 19. O. Pshinko, О. Patlasov, V. Andrieiev, M. Arbuzov, O. Hubar, O. Hromova, R. Markul, “Research of railway crashed stone use of 40-70 mm fraction”, Transport Means - Proceedings of the International Conference 2018- October, pp. 170-178, 2018.
  • 20. H. Profaner, „Ein Beitrag zur Stabilisierung des Schotterbettes”. ETR - Eisenbahntechnische rundschau 1(2):52-53, 1975.
  • 21. C. Vizcarra, S. Nimbalkar, B. Indraratna, M. Casagrande, “Effect of particle size distribution on railroad ballast deformation and breakage”, COBRAMSEG 2014: XVII Brazilian Congress of Soil Mechanics and Geotechnical Engineering, pp. 1-6, 2014.
  • 22. B. Indraratna, W. Salim, C. Rujikiatkamjorn C. “Advanced Rail Geotechnology - Ballasted Track”. CRC Press, Boca Raton, London, New York 2018.
  • 23. P. Claisse, M. Keedwell, C. Calla, “Tests on a two-layered ballast system”, Proceedings of the Institution of Civil Engineers: Transport 156(2):93-101, 2003. DOI: 10.1680/tran.2003.156.2.93
  • 24. P. Claisse, C. Calla, “Discussion: Rail ballast specification: conclusions from a historical perspective”. Proceedings of the Institution of Civil Engineers: Transport 160(3):147-148, 2007. DOI: 10.1680/tran.2007.160.3.147
  • 25. P. Claisse, C. Calla, “Discussion: Rail ballast: Conclusions from a historical perspective”, Proceedings of the Institution of Civil Engineers: Transport 159(4):183, 2006. DOI: 10.1680/tran.2006.159.4.183
  • 26. M. Sysyn, O. Nabochenko, V. Kovalchuk, U. Gerber, “Evaluation of railway ballast layer consolidation after maintenance works”, Acta Polytechnica 59(1):77-87, 2019. DOI: 10.14311/AP.2019.59.0077
  • 27. M. Sysyn, V. Kovalchuk, U. Gerber, O. Nabochenko, B. Parneta, “Laboratory evaluation of railway ballast consolidation by the non-destructive testing”, Communications - Scientific Letters of the University of Zilina 21(2):81-88, 2019.
  • 28. S. Fischer, “Breakage test of railway ballast materials with new laboratory method”, Periodica Polytechnica Civil Engineering 61 (4):794-802, 2017. DOI: 10.3311/PPci.8549
  • 29. S. Fischer, E. Juhasz, “Railroad ballast particle breakage with unique laboratory test method”, Acta Technica Jaurinensis 12(1):26-54, 2019. doi.org/10.14513/actatechjaur.v12.n1.489
  • 30. E. Juhasz, S. Fischer, ”Specific evaluation methodology of railway ballast particles’ degradation”, Science and Transport Progress 3(81):96-109, 2019. doi: https://doi.org/10.15802/stp2019/171778
  • 31. S. Hodás, A. Pultznerová, “Freezing of the Subballast Layers of the Railway Formation - High Embankment and Double Track”, Civil and Environmental Engineering 15(1):5-12, 2019. DOI: 10.2478/cee-2019-0002
  • 32. J. Sadeghi, H. Askarinejad, “Development of improved railway track degradation models”, Structure and Infrastructure Engineering 6(6):675-688, 2010. DOI: 10.1080/15732470801902436
  • 33. U. Gerber, W. Fengler, „Setzungsverhalten des Schotters”, Eisenbahntechnische Rundschau 4: 170-175, 2010.
  • 34. M. Kurhan, D. Kurhan, O. Luzhytskyi, “Inequalities research of the track at the railroad crossings”, Science and Transport Progress 5(59):84-96, 2015. DOI: https://doi.org/10.15802/stp2015/55341
  • 35. D. Kurhan, „Accumulated deformation modeling of permanent way based on entropy system”, Science and Transport Progress 4(58):99-109, 2015. DOI: https://doi.org/10.15802/stp2015/49215
  • 36. V. Jover, V. Gaspar, S Fischer, ”Investigation of geometrical deterioration of tramway tracks”, Science and Transport Progress, Bulletin of Dnipropetrovsk National University of Railway Transport 2(86): 46-59, 2020. DOI: 10.15802/stp2020/204152
  • 37. M. Sysyn, U. Gerber, V. Kovalchuk, O. Nabochenko, „The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works”, Archives of Transport, 46(3):91-107, 2018. DOI: 10.5604/01.3001.0012.6512
  • 38. V. Lysyuk, V. Sazonov, L. Bash-Katova, „A Strong and Reliable Railway Track”, Moscow. Akademkniga, pp. 62-68, 2003.
  • 39. A. Berghold, „Wirkungsweise von unterschiedlichen Gleisschotterarten mit und ohne Schwellenbesohlung”. ZEV rail, 140:45-52, 2016.
  • 40. C. Kuttelwascher, F. Steiner, G. Prager, „Druckausbreitung von belasteten Eisenbahnschwellen im Gleisschotter”. ETR – Eisenbahntechnische Rundschau 12/2012:71-75, 2012.
  • 41. M. Sysyn, V. Kovalchuk, O. Nabochenko, Y. Kovalchuk, O. Vozniak, „Experimental study of railway trackbed pressure distribution under dynamic loading”, Baltic Journal of Road and Bridge Engineering, 4(3), 2019.
  • 42. U. Gerber, M. Sysyn, J. Zarour, O. Nabochenko, ”Stiffness and strength of structural layers from cohesionless material”, Archives of Transport 49(1):59-68, 2019. DOI: https://doi.org/10.5604/01.3001.0013.2776
  • 43. K. Holtzendorff, „Untersuchung des Setzungsverhaltens von Bahnschotter und der Hohllagenentwicklung auf Schotterfahrbahnen”, PHD Thesis, Technische Universität Berlin, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c9d5f8d-693d-4b89-b35c-8d5739de50db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.