PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Micromachining with a Focus on Miniature Gears by Non Conventional Processes. A Status Report

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent developments in automation and technology have revolutionized the way products are made. It is directly seen in the evolution of part miniaturization in the sectors such as aerospace, electronics, biomedicine and medical implants. Micromachining is a promising technology to fulfill the need of miniaturization. A review has been done on the micromachining processes such as micro electric discharge machining (micro-EDM) and wire EDM (WEDM), micro electrochemical machining (micro-ECM). Recent literature were studied and categorized in terms of materials, process parameters, performances, product manufactured, and miniature product generation. Starting with brief introduction to micromachining, classifications and applications, technical aspects of discussions from the literature have been presented on key factors such as parameters and the response variables. Important aspects of recast layer, heat effected zone, micro-hardness, micro cracks, residual stress, etc., have been given. A special focus is given to the status of the research on microgear manufacturing. Comparison has been made between other conventional process suitable for micro-gear manufacturing and WEDM. The miniature gear machined by WEDM shows the defect-free microstructure, better surface finish, thin recast layer and improved gear quality parameters such as profile and pitch. Finally, the research gaps and future research directions have been presented.
Rocznik
Strony
129--169
Opis fizyczny
Bibliogr. 144 poz., fot., rys., tab.
Twórcy
autor
  • Department of Mechanical and Automation Engineering, Indira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi, India
  • Department of Mechanical Engineering, Jamia Millia Islamia (a Central University), New Delhi, India
autor
  • Department of Mechanical and Automation Engineering, G.B. Pant Engineering College, New Delhi, India
autor
  • Department of Mechanical Engineering, Jamia Millia Islamia (a Central University), New Delhi, India
Bibliografia
  • [1] T. Özel. Editorial: special section on micromanufacturing processes and applications. Materials and Manufacturing Processes. 24(12):1235, 2009. doi: 10.1080/10426910903129349.
  • [2] T. Masuzawa. State of the art of micromachining. CIRP Annals, 49(2):473–488, 2000. doi: 10.1016/S0007-8506(07)63451-9.
  • [3] S.P. Leo Kumar, J. Jerald, S. Kumanan, and R. Prabakaran. A Review on Current Research Aspects in Tool-Based Micromachining Processes. Materials and Manufacturing Processes, 29(11-12):1291–1337, 2014. doi: 10.1080/10426914.2014.952037.
  • [4] P. Piljek, Z. Karen, and M. Math. Micromachining – review of literature from 1980 to 2010. Interdisciplinary Description of Complex Systems, 12(1):1–27, 2014. doi: 10.7906/indecs.12.1.1.
  • [5] V.K. Jain. Introduction to Micromachining, 1st ed.; Narosa Publishing House Pvt. Ltd: New Delhi, India, 2011.
  • [6] S.Z. Chavoshi, S. Goel, and P. Morantz. Current trends and future of sequential micromachining processes on a single machine tool. Materials & Design, 127:37–53, 2017. doi: 10.1016/j.matdes.2017.04.057.
  • [7] T. Masuzawa, C.-L. Kuo, and M. Fujino. A combined electrical machining process for micronozzle fabrication. CIRP Annals, 43(1):189–192, 1994. doi: 10.1016/S0007-8506(07)62193-3.
  • [8] M. Kunieda, M. Yoshida, H. Yoshida, and Y. Akatmatsu. Influence of micro indents formed by electro-chemical jet machining on rolling bearing fatigue life. ASME, Production Engineering Division (Publication) PED, 64:693–699, 1993.
  • [9] A.B.M.A. Asad, T. Masaki, M. Rahman, H.S. Lim, and Y.S. Wong. Tool-based micromachining. Journal of Material Processing Technology, 192-193:204–211, 2007. doi: 10.1016/j.jmatprotec.2007.04.038.
  • [10] S.Z. Chavoshi and X. Luo. Hybrid micro-machining processes: A review. Precision Engineering, 41:1–23, 2015. doi: 10.1016/j.precisioneng.2015.03.001.
  • [11] W. Lang. Silicon microstructuring technology. Materials Science and Engineering, 17(1):1–55, 1996. doi: 10.1016/0927-796X(96)00190-8.
  • [12] M. Mehregany and A.S. Dewa. MCNC Short Course Handbook. Case Western Reserve University, Cleveland, USA, 1993.
  • [13] A beginner’s guide to MEMS processes. www.memsnet.org
  • [14] S.S. Choi, M.Y. Jung, D.W. Kim, M.A. Yakshin, J.Y. Park, and Y. Kulk. Fabrication of microelectron gun array using laser micromachining. Microelectronic Engineering, 41/42:167–170, 1998. doi: 10.1016/S0167-9317(98)00037-9.
  • [15] A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite. Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Applied Surface Science, 138-139:311–314, 1999. doi: 10.1016/S0169-4332(98)00411-5.
  • [16] N.H. Rizvi. Femtosecond laser micromachining: Current status and applications. RIKEN Review, 50:107–112, 2003.
  • [17] X.-Q.Sun, T. Masuzawa, and M. Fujino. Micro ultrasonic machining and its applications in MEMS. Sensors and Actuators A: Physical, 57(2):159–164, 1996. doi: 10.1016/S0924-4247(97)80107-0.
  • [18] B.H. Yan, A.C. Wang, C.Y. Huang, and F.Y. Huang. Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining. International Journal of Machine Tools and Manufacture, 42(10):1105–1112, 2002. doi: 10.1016/S0890-6955(02)00061-5.
  • [19] A.C. Wang, B.H. Yan, X.T. Li, and F.Y. Huang. Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. International Journal of Machine Tools and Manufacture, 42(8):915–923, 2002. doi: 10.1016/S0890-6955(02)00025-1.
  • [20] D. Reynaerts, P.H. Heeren, and H.Van Brussel. Microstructuring of silicon by electro-discharge machining (EDM) – part I: theory. Sensors and Actuators A: Physical, 60(1-3):212–218, 1997. doi: 10.1016/S0924-4247(97)01359-9.
  • [21] R.K. Garg, K.K. Singh, and A. Sachdeva. Review of research work in sinking EDM and WEDM on metal matrix composite materials. The International Journal of Advanced Manufacturing Technology, 50(5-8):611–624, 2010. doi: 10.1007/s00170-010-2534-5.
  • [22] A.N. Siddiquee, Z.A. Khan, and J.S. Tomar. Investigation and optimisation of machining parameters for micro-countersinking of AISI 420 stainless steel. International Journal of Machining and Machinability of Materials, 14(3):230–256, 2013. doi: 10.1504/IJMMM.2013.056364.
  • [23] C. Friedrich. Precision Micromanufacturing Processes Applied to Miniaturization Technologies, 1998. http://www.me.mtu.edu/~microweb.
  • [24] D.P. Adams, M.J. Vasile, and A.S.M. Krishnan. Microgrooving and microthreading tools for fabricating curvilinear features. Precision Engineering, 24(4):347–356, 2000. doi: 10.1016/S0141-6359(00)00045-3.
  • [25] Y.N. Picard, D.P. Adams, M.J. Vasile, and M.B. Ritchey. Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components. Precision Engineering, 27(1):59–69, 2003. doi: 10.1016/S0141-6359(02)00188-5.
  • [26] C. Van Osenbruggen, G. Luimes, A. van Dijk, J.G. Siekman, and N.V. Philips. Micro-spark erosion as a technique in micro-miniaturization. IFAC Proceeding Volumes, 2(3):485–493, 1965. doi: 10.1016/S1474-6670(17)68988-2.
  • [27] A. Wenda, M. Beck, V. Huntrup, M. Meisel, M. Rothenburg, O. Rubenach, J. Schmutz, C. Schwietering, and J. Gabler. Possibilities and limits of micro-machining. F und M. Feinwerktechnik, Mikrotechnik, Mikroelektronik, 107(11):64–67, 1999. (in German).
  • [28] T. Schaller, W. Bier, G. Linder, and K. Schubert. Mechanical microstructuring of metallic surfaces. F und M. Feinwerktechnik, Mikrotechnik, Mikroelektronik, 102(5-6):274–278, 1994. (in German).
  • [29] K. Weinert, G. Guntermann, and Ch. Schwietering. Microfabration of difficult to process materials. Werkstattstechnik, 88(11/12):503–506, 1998. (in German).
  • [30] K. Weinert, M. Buschka, and Ch. Schwietering. Processing strategies for microsystems technology – microframe processing NiTiNb shape memory alloy. Technica, 48(8):36–40, 1999. (in German).
  • [31] E. Brinksmeier, W. Preuss, and J. Schmutz. Manufacture of microstructures by diamond machining. In Proceedings of 9th IPES/UME 4 International Conference, pages 503–507, Braunschweig, Germany, 1997.
  • [32] E. Brinksmeier, W. Preuss, O. Riemer, and R. Sigel. Manufacture of shock-wave target-foils for nuclear fusion research. In Proceedings of UME 3, pages 401–404, Aachen, Germany, 1994.
  • [33] Shichun Di, Ruining Huang, and Guanxin Chi. Study on micro-machining by micro-WEDM. In Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Zhuhai, China, 18–21 Jan. 2006. doi: 10.1109/NEMS.2006.334857.
  • [34] N. Nebashi, K. Wakabayashi, M. Yamada, and T. Masuzawa. In-process truing dressing of grinding wheels by WEDG and ELID. International Journal of Electrical Machining, 3:59–64, 1998.
  • [35] E. Westkamper, H.-W. Hoffmeister, and J. Gäbler. Manufacturing concepts for the production of micromechanical metallic components. In Proceeding of Micro Engineering 96, Stuttgart, Germany, 1996.
  • [36] V. Piotter, T. Benzler, T. Hanemann, R. Ruprecht, and J. Hausselt. Manufacturing of microstructures by micro injection molding. In Proceedings of Micro System Technologies, pages 343–348, Potsdam, Germany, 1998.
  • [37] V. Piotter, T. Benzler, R. Ruprecht, and J. Hausselt. Manufacturing of micro sized structures by MIM and CIM. In Proceedings of the International Conference on Powder Metallurgy and Particulate Materials, pages 1–9, Las Vegas, USA, 31 May–4 June, 1998.
  • [38] H. Von Wollmer, R. Ruprecht R., and J. Hausselt. Precision casting of micro parts made of metal. Galvanotechnik, 90(6):1692–1696, 1999.
  • [39] T. Masuzawa, M. Yamamoto, and M. Fujino. A micro-punching system using wire-EDG and EDM. In Proceedings of the 9th International Symposium for Electro-Machining, pages 86–89, Nagoya, Japan, 1989.
  • [40] K.Wakabayashi, A. Onishi, and T. Masuzawa. Micropiercing on stainless steel. Bulletin of Japan Society of Precision Engineering, 24(4):277–278, 1990.
  • [41] H.K. Tonshoff, F. Von Atvendeben, A. Ostendorf, G. Kamlage, G., and S. Notte. Micromachining of metals using ultrashort laser pulses. International Journal of Electrical Machining, 4:1–6, 1999.
  • [42] T. Masaki, K. Kawata, T. Sato, T. Mizutani, K. Yonemoti, A. Shibuya, and T. Masuzawa. Micro electro discharge machining. In Proc. of International Symposium for Electro-Machining, ISEM–9, pages 28–29, Nagoya, Japan, 1989.
  • [43] T. Masuzawa, M. Fujino, K. Kobayashi, T. Suzuki, and N. Kinoshita. Wire electro-discharge grinding for Micro-machining. CIRP Annals, 34(1):431–434, 1985. doi: 10.1016/S0007-8506(07)61805-8.
  • [44] D.M. Allen, H.J.A. Almond, J.S. Bhogal, A.E. Green, P.M. Logan, and X.X. Huang. Typical metrology of micro-hole arrays made in stainless steel foils by two-stage micro-EDM. CIRP Annals – Manufacturing Technology, 48(1):127–130, 1999. doi: 10.1016/S0007-8506(07)63147-3.
  • [45] D. Reynaerts, X. Song, W. Meeusen, and H. Van Brussel. Silicon bulk micromachining by micro-EDM milling with electrode compensation. In Proceedings of the 9th International Fair and Congress for Sensors, Transducers and Systems, pages 249–254, Nurnberg, Germany 18–20 May, 1999.
  • [46] X. Song, D. Reynaert W. Meeusen, and H. Van Brussel. Investigation of micro-EDM for silicon microstructure fabrication. In Proceedings of SPIE Symposium on Micromachining and Microfabrication, pages 792–799, 1999.
  • [47] K.-P. Kamper,W. Ehrfeld, J. Dopper, V. Hessel, H. Lehr, H. Lowe, and Th. Richter. Microfluidic components for biological and chemical microreactors. In Proceeding of 10th Annual International Workshop on Micro Electro Mechanical Systems, IEEE MEMS’97, Nagoya, Japan, 26–30 Jan, 1997. doi: 10.1109/MEMSYS.1997.581849.
  • [48] W. Ehrfeld, H. Lehr, F. Michel, A. Wolf, H.-P. Gruber, and A. Bertholds. Micro electrodischarge machining as a technology in micromachining. Proceedings of SPIE, 2879, Micromachining and Microfabrication Process Technology II, pages 332–337, Austin, USA, 23 Sept. 1996. doi: 10.1117/12.251221.
  • [49] A. Twt. Microtube lithography with dynamically changeable reflection mask. Proceedings of 44th International Sci. Colloquium, Technical University Ilmenau, 1999. (in German).
  • [50] K. Kawata, T. Masaki, T. Sato, and T. Masuzawa. Accuracy of micro-electrodischarge machining. Proceedings of International Conference on Precision Engineering ’97, Taipei, Taiwan, 1997.
  • [51] H. Li and T. Masaki. Micro-EDM. SME Technical Paper, MS91–485, 1991.
  • [52] G. Spur, E. Uhlmann, U. Doll, and N.-A. Daus. WEDM of microstructured component parts – heat conduction model. International Journal of Electrical Machining, 4:41–46, 1999.
  • [53] E. Uhlmann, G. Spur, N.-A. Daus, and U. Doll. Application of p-EDM in the Machining of Micro Structured Forming Tools. Proceedings of 3rd International Machining and Grinding Conference, Cincinnati, USA, 1999.
  • [54] A.E. Guber, N. Giordano, M. Loser, and P. Wieneke. Mikroinstrumente aus Nickel Titan. F&M Feinwerktechnik, Mikrotechnik, Mikroelektronik, 105(4):247–251, 1997.
  • [55] D.T. Pham, S.S. Dimov, S. Bigot, A. Ivanov, and K. Popov. Micro-EDM – recent developments and research issues, Journal of Materials Processing Technology, 149(1-3):50–57, 2004. doi: 10.1016/j.jmatprotec.2004.02.008.
  • [56] A. Schoth, R. Förster, and W. Menz. Micro wire EDM for high aspect ratio 3D microstructuring of ceramics and metals, Microsystem Technologies, 11(4-5):250–253, 2005. doi: 10.1007/s00542-004-0399-y.
  • [57] Y.F. Luo, C.G. Chen, and Z.F. Tong. Investigation of silicon wafering by wire EDM. Journal of Materials Science, 27(21): 5805–5810, 1992. doi: 10.1007/BF01119742.
  • [58] G.N. Levy and R. Wertheim. EDM-machining of sintered carbide compacting dies. CIRP Annals, 37(1):175–178, 1988. doi: 10.1016/S0007-8506(07)61612-6.
  • [59] B.K. Rhoney, A.J. Shih, R.O. Scattergood, J.L. Akemon, D.J. Gust, and M.B. Grant.Wire electrical discharge machining of metal bond diamond wheels for ceramic grinding. International Journal of Machine Tools and Manufacture, 42(12):1355–1362, 2002. doi: 10.1016/S0890-6955(02)00056-1.
  • [60] B.K. Rhoney, A.J. Shih, R.O. Scattergood, R. Ott, and S.B. McSpadden. Wear mechanism of metal bond diamond wheels trued by wire electrical discharge machining. Wear, 252(7-8):644–653, 2002. doi: 10.1016/S0043-1648(02)00019-4.
  • [61] A. Kruusing, S. Leppävuori, A. Uusimäki, B. Petrêtis, and O. Makarova. Micromachining of magnetic materials. Sensors Actuators A: Physical, 74(1–):45–51, 1999. doi: 10.1016/S0924-4247(98)00343-4.
  • [62] K. Gupta, R.F. Laubscher, J.P. Davim, and N.K. Jain. Recent developments in sustainable manufacturing of gears: a review. Journal of Cleaner Production, 112(4):3320–3330, 2016. doi: 10.1016/j.jclepro.2015.09.133.
  • [63] R. Neugebauer, U. Hellfritzsch, M. Lahl, M. Milbrandt, S. Schiller, and T. Druwe. Gear rolling process. In: Denkena B., Hollmann F., editors, Process machine interactions. Lecture Notes in Production Engineering, pages 475–490, Springer, Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-32448-2_22.
  • [64] R. Neugebauer, M. Putz, and U. Hellfritzsch. Improved process design and quality for gear manufacturing with flat and round rolling. CIRP Annals, 56(1):307–312, 2007. doi: 10.1016/j.cirp.2007.05.071.
  • [65] K. Gupta and N.K. Jain. Comparative study of wire-EDM and hobbing for manufacturing high quality miniature gears. Materials and Manufacturing Processes, 29(11-12): 1470–1476, 2014. doi: 10.1080/10426914.2014.941865.
  • [66] J.P. Davim.Nontraditional Machining Processes: Research Advances. Springer, London, 2013.
  • [67] M. Rahman, A.B.M.A. Asad, and Y.S. Wong. Introduction to advanced machining technologies. In Hashmi, S. (Ed.), Comprehensive Materials Processing, pages 1–13, Elsevier, Amsterdam, 2014.
  • [68] J.R. Davis (Ed.). Gear Materials, Properties, and Manufacture. ASM International, 2005.
  • [69] S. Kuriakose, M.S. Shunmugam. Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm. Journal of Materials Processing Technology, 170(1-2):133–141, 2005. doi: 10.1016/j.jmatprotec.2005.04.105.
  • [70] H.-Ch. Chen, J.-Ch. Lin, Y.-K. Yang, and Ch.H. Tsai. Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach. Expert Systems with Applications, 37(10):7147–7153, 2010. doi: 10.1016/j.eswa.2010.04.020.
  • [71] M.S. Hewidy, T.A. El-Taweel, and M.F. El-Safty. Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. Journal of Materials Processing Technology, 169(2):328–336, 2005. doi: 10.1016/j.jmatprotec.2005.04.078.
  • [72] P. Sengottuvel, S. Satishkumar, and D. Dinakaran. Optimization of multiple characteristics of EDM parameters based on desirability approach and fuzzy modeling. Procedia Engineering, 64:1069–1078, 2013. doi: 10.1016/j.proeng.2013.09.185.
  • [73] V. Muthukumar, N. Rajesh, R. Venkatasamy, A. Sureshbabu, and N. Senthilkumar. Mathematical modeling for radial overcut on electrical discharge machining of Incoloy 800 by response surface methodology. Procedia Materials Science, 6:1674–1682, 2014. doi: 10.1016/j.mspro.2014.07.153.
  • [74] U.A. Dabadea, S.S. Karidkar. Analysis of response variables in WEDM of Inconel 718 using Taguchi technique. Procedia CIRP, 41:886–891, 2016. doi: 10.1016/j.procir.2016.01.026.
  • [75] H. Dong, Y. Liu, Y. Shen, and X. Wang. Optimizing machining parameters of compound machining of Inconel718. Procedia CIRP, 42:51–56, 2016. doi: 10.1016/j.procir.2016.02.185.
  • [76] B.B. Nayak and S.S. Mahapatra. Optimization of WEDM process parameters using deep cryotreated Inconel 718 as work material. Engineering Science and Technology, an International Journal, 19(1):161–170, 2016. doi: 10.1016/j.jestch.2015.06.009.
  • [77] G. Rajyalakshmi and P. Venkata Ramaiah. Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. The International Journal of Advanced Manufacturing Technology, 69(5-8):1249–1262, 2013. doi: 10.1007/s00170-013-5081-z.
  • [78] V. Aggarwal, S.S. Khangura, and R.K. Garg. Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. The International Journal of Advanced Manufacturing Technology, 79(1-4):31–47, 2015. doi: 10.1007/s00170-015-6797-8.
  • [79] F. Klocke, D.Welling, A. Klink, D. Veselovac, T. Nöthe, and R. Perez. Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Procedia CIRP, 14:430–435, 2014. doi: 10.1016/j.procir.2014.03.039.
  • [80] D.P. Townsend. Dudley’s Gear Handbook: The Design, Manufacture and Application of Gears. 2nd edition, Tata McGraw-Hill Publishing Company, New Delhi, 2011.
  • [81] M. Sreenivasa Rao and N. Venkaiah. Parametric optimization in machining of Nimonic-263 alloy using RSM and particle swarm optimization. Procedia Materials Science, 10:70–79, 2015. doi: 10.1016/j.mspro.2015.06.027.
  • [82] A. Goswami and J. Kumar. Optimization in wire-cut EDM of Nimonic-80A using Taguchi’s approach and utility concept. Engineering Science and Technology, an International Journal, 17(4):236–246, 2014. doi: 10.1016/j.jestch.2014.07.001.
  • [83] R. Choudhary, V.K. Gupta, Y. Batra, and A. Singh. Performance and surface integrity of Nimonic75 alloy machined by electrical discharge machining. Materials Today: Proceedings, 2(4-5):3481–3490, 2015. doi: 10.1016/j.matpr.2015.07.324.
  • [84] A. Alias, B. Abdullah, and N.M. Abbas. Influence of machine feed rate in WEDM of titanium Ti-6Al-4V with constant current (6A) using brass wire. Procedia Engineering, 41:1806–1811, 2012. doi: 10.1016/j.proeng.2012.07.387.
  • [85] R. Chalisgaonkar and J. Kumar. Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CPTi) considering multiple user’s preferences. Engineering Science and Technology, an International Journal, 18(2):125–134, 2015. doi: 10.1016/j.jestch.2014.10.006.
  • [86] D. Amrish Raj and T. Senthilvelan. Empirical modelling and optimization of process parameters of machining titanium alloy by wire-EDM using RSM. Materials Today: Proceedings, 2(4-5):1682–1690, 2015. doi: 10.1016/j.matpr.2015.07.096.
  • [87] M. Kolli and A. Kumar. Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method. Engineering Science and Technology, an International Journal, 18(4):524–535, 2015. doi: 10.1016/j.jestch.2015.03.009.
  • [88] S. Sarkar, S. Mitra, and B. Bhattacharyya. Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. The International Journal of Advanced Manufacturing Technology, 27(5-6):501–508, 2006. doi: 10.1007/s00170-004-2203-7.
  • [89] C.H. Fu, J.F. Liu, Y.B. Guo, and Q.Z. Zhao. A comparative study on white layer properties by laser cutting vs. electrical discharge machining of Nitinol shape memory alloy. Procedia CIRP, 42:246–251, 2016. doi: 10.1016/j.procir.2016.02.280.
  • [90] G.L. Chern, Y.-J. Engin Wu, J.-C. Cheng, J.-C. Yao. Study on burr formation in micromachining using micro-tools fabricated by micro-EDM. Precision Engineering, 31(1):122–129, 2007. doi: 10.1016/j.precisioneng.2006.04.001.
  • [91] P.S Rao, K. Ramji, B. Stayanarayana. Experimental investigation and optimization of Wire EDM parameter for surface roughness, MRR and white layer in machining of aluminum alloy. Procedia Materials Science, 5:2197–2206, 2014. doi: 10.1016/j.mspro.2014.07.426.
  • [92] K.T. Chiang, F.P. Chang. Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. Journal of Materials Processing Technology, 180(1-3):96–101, 2006. doi: 10.1016/j.jmatprotec.2006.05.008.
  • [93] A. Manna and B. Bhattacharyya. Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. The International Journal of Advanced Manufacturing Technology, 28(1-2):67–75, 2006. doi: 10.1007/s00170-004-2331-0.
  • [94] R. Paetzel. Comparison Excimer Laser – Solid State Laser. In Proceedings of 21st International Congress on Applications of Lasers & Electro-Optics, ICALEO 2002, Scotsdale, Arizona, USA, 14–17 Oct. 2002.
  • [95] R. Bobbili, V. Madhu, and A.K. Gogia. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials. Engineering Science and Technology, an International Journal, 18(4):664–668, 2015. doi: 10.1016/j.jestch.2015.03.014.
  • [96] B.K. Lodhi and S. Agarwal. Optimization of machining parameters in WEDM of AISI D3 steel using Taguchi technique. Procedia CIRP, 14:194–199, 2014. doi: 10.1016/j.procir.2014.03.080.
  • [97] K. Kanlayasiri and S. Boonmung. Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: Design of experiments and regression model. Journal of Materials Processing Technology, 192-193:459–464, 2007. doi: 10.1016/j.jmatprotec.2007.04.085.
  • [98] Z.A. Khan, A.N. Siddiquee, N.Z. Khan, U. Khan, and G.A. Quadir. Multi response optimization of wire electrical discharge machining process parameters using Taguchi based grey relational analysis. Procedia Materials Science, 6:1683–1695, 2014. doi: 10.1016/j.mspro.2014.07.154.
  • [99] N.Z. Khan, Z.A. Khan, A.N. Siddiquee, and A.K. Chanda. Investigations on the effect of wire EDM process parameters on surface integrity of HSLA: a multi-performance characteristics optimization. Production & Manufacturing Research, 2(1):501–518, 2014. doi: 10.1080/21693277.2014.931261.
  • [100] S. Lal, S. Kumar, Z.A. Khan, and A.N. Siddiquee. Wire electrical discharge machining of AA7075/SiC/Al2O3 hybrid composite fabricated by inert gas-assisted electromagnetic stir casting process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 36(2):335–346, 2014. doi: 10.1007/s40430-013-0087-x.
  • [101] H.-M. Chow, B.-H.Yan, F.-Y. Huang, and J.-C. Hung. Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. Journal of Materials Processing Technology, 101(1-3):95–103, 2000. doi: 10.1016/S0924-0136(99)00458-6.
  • [102] R. Bagherian Azhiri, R. Teimouri, M. Ghasemi Baboly, and Z. Leseman. Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. The International Journal of Advanced Manufacturing Technology, 71(1-4):279–295, 2014. doi: 10.1007/s00170-013-5467-y.
  • [103] A.V. Shayan, R.A. Afza, and R. Teimouri. Parametric study along with selection of optimal solutions in dry wirecut machining of cemented tungsten carbide (WC-Co). Journal of Manufacturing Processes, 15(4):644–658, 2013. doi: 10.1016/j.jmapro.2013.05.001.
  • [104] G. Ugrasen, H.V. Ravindra, G.V. Naveen Prakash, and D.L. Vinay. Comparative study of electrode wear estimation in wire EDM using multiple regression analysis and group method data handling technique for EN-8 and EN-19. Bonfring International Journal of Industrial Engineering and Management Science, 4(2):108–114, 2014. doi: 10.9756/BIJIEMS.6022.
  • [105] R.K. Fard, R.A. Afza, and R. Teimouri. Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al–SiC metal matrix composite. Journal of Manufacturing Processes, 15(4):483–494, 2013. doi: 10.1016/j.jmapro.2013.09.002.
  • [106] F. Nourbakhsh, K.P. Rajurkar, A.P. Malshe, and J. Cao. Wire electro-discharge machining of titanium alloy. Procedia CIRP, 5:13–18, 2013. doi: 10.1016/j.procir.2013.01.003.
  • [107] E. Bamberg and D. Rakwal. Experimental investigation of wire electrical discharge machining of gallium-doped germanium. Journal of Materials Processing Technology, 197(1-3):419–427, 2008. doi: 10.1016/j.jmatprotec.2007.06.038.
  • [108] J.T. Huang, and Y.S. Liao. Optimization of machining parameters of Wire-EDM based on grey relational and statistical analyses. International Journal of Production Research, 41(8):1707–1720, 2003. doi: 10.1080/1352816031000074973.
  • [109] R. Ramakrishnan and L. Karunamoorthy. Multi response optimization of wire EDM operations, using robust design of experiments. The International Journal of Advanced Manufacturing Technology, 29(1-2):105–112, 2006. doi: 10.1007/s00170-004-2496-6.
  • [110] R.T. Yang, C.J. Tzeng, Y.K. Yang, and M.H. Hsieh. Optimization of wire electrical discharge machining process parameters for cutting tungsten. The International Journal of Advanced Manufacturing Technology, 60(1-4):135–147, 2012. doi: 10.1007/s00170-011-3576-z.
  • [111] N.G. Patil and P.K. Brahmankar. Some investigations into wire electro-discharge machining performance of Al/SiCp composites. International Journal of Machining and Machinability of Materials, 1(4):412–431, 2006. doi: 10.1504/IJMMM.2006.012350.
  • [112] R. Teimouri and H. Baser. Improvement of dry EDM process characteristics using artificial soft computing methodologies. Production Engineering, 6(4-5):493–504, 2012. doi: 10.1007/s11740-012-0398-2.
  • [113] V.K. Saini, Z.A. Khan, and A.N. Siddiquee. Optimization of wire electric discharge machining of composite material (Al6061/SiCP) using Taguchi method. International Journal of Mechanical and Production Engineering, 2(1):61–64, 2013.
  • [114] P. Saha, D. Trafdar, S.K. Pal, P. Saha, A.K. Srivastava, and K. Das. Modeling of wire electrodischarge machining of TiC/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique. The International Journal of Advanced Manufacturing Technology, 43(1-2):107–116, 2009. doi: 10.1007/s00170-008-1679-y.
  • [115] S. Lal, S. Kumar, Z.A. Khan, and A.N. Siddiquee. Multi-response optimization of wire electrical discharge machining process parameters for Al7075/Al2O3/SiC hybrid composite using Taguchi-based grey relational analysis. Journal of Engineering Manufacture, 229(2):229–237, 2015. doi: 10.1177/0954405414526382.
  • [116] F. Klocke, S. Schneider, L. Ehle, H. Meyer, L. Hensgen, and A. Klink. Investigations on surface integrity of heat treated 42CrMo4 (AISI 4140) processed by sinking EDM. Procedia CIRP, 42:580–585, 2016. doi: 10.1016/j.procir.2016.02.263.
  • [117] M. Manjaiah, S. Narendranath, S. Basavarajappa, and V.N Gaitonde. Wire electric discharge machining characteristics of titanium nickel shape memory alloy. Transactions of Nonferrous Metals Society of China, 24(10):3201–3209, 2014. doi: 10.1016/S1003-6326(14)63461-0.
  • [118] J.A. Sanchez, J.L. Rodil, A. Herrero, L.N. Lopez de Lacalle, and A. Lamikiz. On the influence of cutting speed limitation on the accuracy of wire-EDM corner-cutting. Journal of Materials Processing Technology, 182(1-3):574–579, 2007. doi: 10.1016/j.jmatprotec.2006.09.030.
  • [119] A. Hasçalýk and U. Çaydas. Experimental study of wire electrical discharge machining of AISI D5 tool steel. Journal of Materials Processing Technology, 148(3):362–367, 2004. doi: 10.1016/j.jmatprotec.2004.02.048.
  • [120] L. Li, Y.B. Guo, X.T. Wei, and W. Li. Surface integrity characteristics in wire-EDM of Inconel 718 at different discharge energy. Procedia CIRP, 6:220–225, 2013. doi: 10.1016/j.procir.2013.03.046.
  • [121] C.A. Huang, F.Y. Hsu, and S.J. Yao. Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM). Materials Science and Engineering: A, 371(1-2):119–126, 2004. doi: 10.1016/j.msea.2003.10.277.
  • [122] F. Klocke, L. Hensgen, A. Klink, L. Ehle, and A. Schwedt. Structure and composition of the white layer in the wire-EDM process. Procedia CIRP, 42:673–678, 2016. doi: 10.1016/j.procir.2016.02.300.
  • [123] Y. Zhang, Y. Liu, R. Ji, and B. Cai. Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Applied Surface Science, 257(14):5989–5997, 2011. doi: 10.1016/j.apsusc.2011.01.083.
  • [124] E. Atzeni, E. Basooli, A. Gatto, L. Luliano, P. Minetola, and A. Salmi. Surface and subsurface evaluation in coated wire-electric discharge machining (WEDM) of INCONEL alloy 718. Procedia CIRP, 33:388–393, 2015. doi: 10.1016/j.procir.2015.06.089.
  • [125] L. Li, X.T. Wei, and Z.Y. Li. Surface integrity evolution and machining efficiency analysis of W-EDM of nickel-based alloy. Applied Surface Science, 313:138–143, 2014. doi: 10.1016/j.apsusc.2014.05.165.
  • [126] A. Klink, Y.B. Guo, and F. Klocke. Surface integrity evolution of powder metallurgical tool steel by main cut and finishing trim cuts in wire-EDM. Procedia Engineering, 19:178–183, 2011. doi: 10.1016/j.proeng.2011.11.098.
  • [127] C. Cao, X. Zhang, X. Zha, and C. Dong. Surface integrity of tool steels multicut by wire electrical discharge machining. Procedia Engineering, 81:1945–1951, 2014. doi: 10.1016/j.proeng.2014.10.262.
  • [128] E. Uhlmann, M. Reohner, and M. Langmack. Application of micro-EDM in the machining of micro structured forming tools. In Proceedings of 3rd International Machining and Grinding Conference, Cincinnati,1999.
  • [129] J.F. Liu, L. Li, and Y.B. Guo. Surface integrity evolution from main cut to finish trim cut in W-EDM of shape memory alloy. Procedia CIRP, 13:137–142, 2014. doi: 10.1016/j.procir.2014.04.024.
  • [130] Z. Chen, J. Moverare, R.L. Peng, and S. Johansson. Surface integrity and fatigue performance of Inconel 718 in wire electrical discharge machining. Procedia CIRP, 45:307–310, 2016. doi: 10.1016/j.procir.2016.02.053.
  • [131] M-T. Yan, G-R. Fang, Y-T. Liu, and J-R. Li. Fabrication of polycrystalline diamond wheels by micro wire-EDM using a novel pulse generator. Procedia CIRP, 6:203–208, 2013. doi: 10.1016/j.procir.2013.03.013.
  • [132] V.P. Astakhov. Surface integrity – definition and importance in functional performance. In J.P. Davim, editor, Surface Integrity in Machining, pages 1–35, Springer, London, 2010. doi: 10.1007/978-1-84882-874-2.
  • [133] G.P. Petropoulos, C.N. Pandazaras, and J.P. Davim. Surface texture characterization and evaluation related to machining. In J.P. Davim, editor, Surface Integrity in Machining, pages 37–66, Springer, London, 2010. doi: 10.1007/978-1-84882-874-2.
  • [134] G.F. Benedict. Nontraditional Manufacturing Processes, pages 207–254, Marcel Dekker, Inc., New York, 1987.
  • [135] A.B. Puri and B. Bhattacharyya. An analysis and optimization of the geometrical inaccuracy due to wire lag phenomenon in WEDM. International Journal of Machine Tools and Manufacture, 43(2):151–159, 2003. doi: 10.1016/S0890-6955(02)00158-X.
  • [136] K. Gupta and N.K. Jain. Manufacturing of high quality miniature gears by wire electric discharge machining. In B. Katalinic and Z. Tekic, editors: DAAAM International Scientific Book 2013, pages 679–696, DAAAM International, Vienna, Austria, 2013. doi: 10.2507/daaam.scibook.2013.40.
  • [137] K. Gupta and N.K. Jain. Analysis and optimization of micro-geometry of miniature spur gear manufactured by wire electric discharge machining. Precision Engineering, 38(4):728–737, 2014. doi: 10.1016/j.precisioneng.2014.03.009.
  • [138] K. Gupta, S.K. Chaube, and N.K. Jain. Exploring Wire-EDM for manufacturing high quality meso-gear. Procedia Materials Science, 5:1755–1760, 2014. doi: 10.1016/j.mspro.2014.07.365.
  • [139] M.Y. Ali, A.N. Mustafizul Karim, E.Y.T. Adesta, A.F. Ismail, A.A. Abdullah, and M.N. Idris. Comparative study of conventional and micro WEDM based on machining of meso/micro sized spur gear. International Journal Of Precision Engineering And Manufacturing, 11(5):779–784, 2010. doi: 10.1007/s12541-010-0092-2.
  • [140] M.Y. Ali and A.S. Mohammad. Experimental study of conventional wire electrical discharge machining for microfabrication. Materials and Manufacturing Processes, 23(7):641–645, 2008. doi: 10.1080/10426910802316492.
  • [141] K. Gupta and N.K. Jain. Deviations in geometry of miniature gears fabricated by wire electrical discharge machining. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, California, USA, 15–21 Nov. 2013. doi: 10.1115/IMECE2013-66560.
  • [142] K. Gupta and N.K. Jain. On micro-geometry of miniature gears manufactured by wire electrical discharge machining. Materials and Manufacturing Processes, 28(10):1153–1159, 2013. doi: 10.1080/10426914.2013.792422.
  • [143] G.L. Benavides, L.F. Bieg, M.P. Saavedra, and E.A. Bryce. High aspect ratio mesoscale parts enabled by wire micro-EDM. Microsystem Technologies, 8(6):395–401, 2002. doi: 10.1007/s00542-002-0190-x.
  • [144] S. Di, R. Huang, and G. Chi. Study on micro-machining by micro-WEDM. In Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 18–21 Jan. 2006. doi: 10.1109/NEMS.2006.334857.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c963404-f796-4135-8505-efd963263617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.