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MINIMISING BACKBREAK AT THE DEWAN CEMENT LIMESTONE QUARRY USING 
AN ARTIFICIAL NEURAL NETWORK

MINIMALIZACJA ZASIĘGU KRUSZENIA ZŁOŻA POZA OBSZAREM PRAC STRZAŁOWYCH 
W KAMIENIOŁOMIE WYDOBYWAJĄCYM WAPIEŃ DO PRODUKCJI CEMENTU W DEEWAN, 

PRZY WYKORZYSTANIU SZTUCZNYCH SIECI NEURONOWYCH

Backbreak, defined as excessive breakage behind the last row of blastholes in blasting operations at 
a quarry, causes destabilisation of rock slopes, improper fragmentation, minimises drilling efficiency. In 
this paper an artificial neural network (ANN) is applied to predict backbreak, using 12 input parameters 
representing various controllable factors, such as the characteristics of explosives and geometrical blast 
design, at the Dewan Cement limestone quarry in Hattar, Pakistan. This ANN was trained with several 
model architectures. The 12-2-1 ANN model was selected as the simplest model yielding the best result, 
with a reported correlation coefficient of 0.98 and 0.97 in the training and validation phases, respectively. 
Sensitivity analysis of the model suggested that backbreak can be reduced most effectively by reducing 
powder factor, blasthole inclination, and burden. Field tests were subsequently carried out in which these 
sensitive parameters were varied accordingly; as a result, backbreak was controlled and reduced from 8 m 
to less than a metre. The resulting reduction in powder factor (kg of explosives used per m3 of blasted 
material) also reduced blasting costs.

Keywords: Neural Network, backbreak, sensitivity analysis, modeling, blast design, quarry

Kruszenie części złoża poza obszarem prowadzonych prac strzałowych oznacza nadmierne pęka-
nie skał poza ostatnim rzędem otworów strzałowych w trakcie prac w kamieniołomach i prowadzi do 
destabilizacji górotworu poprzez zmianę nachylenia warstw skalnych, powoduje niepotrzebną fragmen-
tację skał i obniża efektywność prac wiertniczych. W pracy tej wykorzystano sztuczną sieć neuronową 
(ANN) do przewidywania zasięgu kruszenia dalszej części złoża przy wykorzystaniu 12 parametrów 
wejściowych. Parametry te opisują różne zmienne czynniki, np. charakterystyka materiału wybucho-
wego czy przyjęty plan prac strzałowych w kamieniołomie Deewan w regionie Hattar w Pakistanie. 
Prowadzono proces uczenia sieci dla różnej architektury modelu, wybrano model 12-2-1 ANN, jako 
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model najprostszy, zapewniający najlepszy wynik a współczynniki korelacji uzyskane dla fazy uczenia 
i walidacji wyniosły odpowiednio 0.98 i 0.97. Przeprowadzona analiza wrażliwości modelu wykazała 
że zasięg kruszenia dalszych części złoża obniżyć można poprzez zmianę parametrów ładunku strzel-
niczego, zmianę nachylenia otworów strzałowych oraz zmianę przybitki. Badania terenowe w czasie 
których ulegały zmianie wartości wyżej wymienionych wrażliwych parametrów wykazały, że zasięg 
kruszenia złoża poza obszarem prac strzałowych ograniczono z uprzednich 8 m do wielkości poniżej 
jednego metra. Obniżenie współczynnika charakteryzującego ładunek (kg zastosowanego materiału 
wybuchowego przypadający na 1 m3 rozkruszonego materiału skalnego) pozwoliło także na obniżenie 
kosztów prac strzałowych.

Słowa kluczowe: sieci neuronowe, zasięg kruszenia, analiza wrażliwości, modelowanie, projektowanie 
robót strzałowych, kamieniołom

1. Introduction

Drilling and blasting costs, which account for a quarter of total operational costs, may contain 
half of these costs due to certain adverse factors such as backbreak, toe, boulders, etc. (Oraee & 
Asi, 2006). Failure to properly design blasting procedures at the final pit walls can cost many 
millions of dollars in additional waste removal (Workman, 1992). Backbreak, or rock breakage 
beyond the bounds of the last row in bench blasting (Olofsson, 1990), generally leads to pit wall 
angles smaller than those required, and may require costly artificial support techniques (Work-
man, 1992). It causes instability of rock slopes (Ashby, 1981), minimum drilling efficiency, and 
improper fragmentation (Monjezi & Dehghani, 2008). Wyllie & Mah (2004) suggested controlled 
blasting techniques such as cushion blasting, line drilling, and pre-shearing in order to minimise 
backbreak. These techniques are generally expensive and time-consuming (Workman, 1992), 
and therefore cheaper and efficient ways for controlling backbreak need to be devised. Various 
studies have been carried out to identify the key blast design parameters influencing backbreak. 
Modelling backbreak requires robust and adaptable models to derive an optimal blast design 
(Monjezi & Dehghani, 2008). Empirical methods and traditional modelling techniques such 
as multivariate regression fail to derive the cause of backbreak in cases where it is affected by 
numerous parameters nonlinearly. Artificial intelligence has been diversely applied in earth sci-
ences recently, using fuzzy logic (Demicco & Klir, 2004; Muhammad & Glass, 2011), neural 
networks (Bonaventura et al., 2017; Chatterjee et al., 2010; Izadi et al., 2017; Rogiers et al., 
2012; Roslin & Esterle, 2016; Muhammad et al., 2014), and neuro-fuzzy modelling techniques 
(Cherkassky et al., 2006; Kar et al., 2014; Valdés & Bonham-Carter, 2006; Yegireddi & Uday 
Bhaskar, 2009; Yurdakul et al., 2014; Zoveidavianpoor et al., 2013). Recently, several researchers 
have solved backbreak problems through applying neural networks (Jang & Topal, 2013; Monjezi 
& Dehghani, 2008; Monjezi et al., 2013; Saadat et al., 2014; Sayadi et al., 2013; Ebrahimi et al., 
2016), neuro-fuzzy techniques (Ghasemi et al., 2016), stochastic optimisation (Sari et al., 2013), 
and machine learning techniques (Khandelwal & Monjezi, 2012; Mohammadnejad et al., 2013). 
The findings differed according to rock type, as the characteristics of explosives and geometry 
of blast design are different in different conditions.

In this paper, a prediction model based on an artificial neural network (ANN) was devel-
oped to predict the backbreak phenomenon at the Dewan Cement limestone quarry in Hattar, 
Pakistan. Two additional parameters (i.e. blasthole inclination and number of free faces) were 
included in the development of the ANN-based backbreak prediction model. The most sensitive 
input parameters were identified and modified appropriately in order to minimise backbreak. 
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In the next section, a brief overview of previous backbreak models is presented; subsequently, 
a case study is presented, followed by sensitivity analysis, results and discussion, and a final 
conclusion section.

2. Modelling the backbreak phenomenon

The input variables for backbreak are classified as follows: geometrical, concerned with the 
spatial design and orientation of the blastholes; explosive-dependent, concerning the intensity 
and mode of use of explosives; operational, concerning controlling factors during blasting, e.g. 
delays; and uncontrollable, such as geology and rock type. Previously, researchers considered 
burden, spacing, hole depth, and stemming as input variables for evaluating backbreak (Sayadi 
et al., 2013; Mohammadnejad et al., 2013; Monjezi et al., 2013; Monjezi & Dehghani, 2008; 
Khandelwal & Monjezi, 2012; Monjezi et al., 2010; Sari et al., 2013). Certain additional param-
eters such as drillhole height, specific charge (Sayadi et al., 2013), specific drilling (Sayadi et 
al., 2013; Mohammadnejad et al., 2013; Monjezi et al., 2013), number of rows (Faramarzi et al., 
2012; Monjezi et al., 2013), powder factor (Faramarzi et al., 2012; Monjezi et al., 2013; Sari et 
al., 2013), delay per metre (Monjezi et al., 2013), charge per delay (Monjezi et al., 2010), rock 
density (Monjezi et al., 2013; Monjezi et al., 2010), geometric stiffness (Sari et al., 2013), and 
rock factor (Monjezi et al., 2013) have also been included as inputs for developing backbreak 
models. In most cases, the backbreak phenomenon is nonlinear; therefore, artificial intelligence 
has been preferred to multivariate regression in the development of backbreak prediction and 
control models. An artificial neural network (ANN) is a type of supervised learning technique 
emulating the human nervous system. It consists of a layered set of nodes whereby each node 
has a weighted connection to a set of nodes in subsequent layers (Hopfield, 1984). The weights 
are optimised by supervising minimisation of errors between the predicted and actual outputs. 
Minimisation of error, i.e. ‘learning’, in adapting to known outputs is done through techniques such 
as backpropagation, developed in the 1980s. The adaptability of the models is due to a nonlinear 
function in each node. Once the network is trained, i.e. when the error of outputs is minimised 
to an acceptable level, it can be used to predict the outputs for any given values of inputs. Cur-
rently the ANN technique is one of the most logical practices for solving composite problems 
(Khandelwal et al., 2004). The theoretical background of the technique is explained clearly in 
the literature (Tadeusiewicz, 2015; Mehrotra et al., 1997; Muhammad et al., 2014). Some studies 
resulted merely in a prediction model for backbreak phenomenon (Khandelwal & Monjezi, 2012; 
Mohammadnejad et al., 2013), without explicit identification of the controlling variables that 
minimise backbreak. Others identified different combinations of sensitive parameters from the 
model for different situations. Some researchers have reported that increased backbreak is due 
to increases in stemming, burden (Sayadi et al., 2013), stiffness ratio, and improper delay timing 
(Gates et al., 2005). Monjezi & Dehghani (2008) observed that the most important parameters 
concerning the backbreak phenomenon are the ratios of stemming to burden and last-row charge 
to total charge, powder factor, total charge per delay, and the number of rows in a blasting round. 
Rock factor, number of rows (Monjezi et al., 2014), stemming length, hole depth, burden, and 
hole spacing (Monjezi et al., 2010) are other sensitive parameters related to controlling backbreak. 
Konya and Walter (1991) reported that the reasons for backbreak include excessive stemming (i.e. 
more than 0.7 of burden) on hard rock benches, excessive burden in stiff benches, and improper 
delay times (i.e. between 4-6 milliseconds of delay between back holes).
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3. Case study: the Dewan Cement quarry 
in Hattar, Pakistan

The Dewan Cement limestone quarry in Hattar is located at 35º50′38.61″N, 72º52′15.04″E, 
4.5 km from the crusher of the plant, in the province of Khyber Pakhtunkhwa, Pakistan. Due 
to inappropriate blasting patterns, backbreak was a major problem, reaching up to 8 m. Conse-
quently, the working bench is cut off, necessitating excessive drilling, blasting, and dozing in 
order to bring the bench to an operational condition, which leads in turn to an increase in the 
overall cost of mining. When the blast was designed, the diameter of the blastholes was set to 
104 mm and the explosive charge divided into three portions: bottom charge, column charge, 
and stemming portion. A high explosive such as Tovex/Wabox was used as the bottom charge, 
ANFO as a column charge, and drill cuttings as stemming material. The explosive cartridge 
used was 75 mm in diameter and 500 mm in length. The stemming of the shot holes was set to 
0.7 times the burden in accordance with Konya & Walter (1991). Data was collected by varying 
design parameters between the limits shown in Table 1. A list of detailed parameters is given in 
Table 2. Input parameters such as burden and spacing are established parameters of importance 
for backbreak. They are included in the model, albeit with subtle variations in order to investigate 
their effect in combination with other variables. Data was recorded for 40 different blast designs, 
represented by 12 input variables and the corresponding output, i.e. backbreak. All of the vari-
ables were normalised via range transformation to values between 0 and 1.

TABLE 1

General blast design parameters at the Dewan Cement limestone quarry

Parameter Description
Height of the bench 6-18 m
Burden 3-3.5 m
Spacing 3.5-4.5 m
High explosive (by volume) 10-30%
ANFO (by volume) 70-90%
Delay per row 50-100 milliseconds
Hole-to-hole delay 25-75 milliseconds

3.1. Multivariate linear regression

The linear regression coefficients shown in Table 2 were derived using the least squares 
method. The predicted values were back-transformed to original values and compared with the 
actual values. Multiple linear regression showed a poor fit at the extreme ends (where higher and 
lower backbreak values were recorded); accordingly, the reported correlation between predicted 
and measured backbreak was 0.45. Thus a reliable method such as ANN was required to model 
the nonlinear complex relationship between the input and output variables.
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TABLE 2

Input variables for modelling the output (Q: backbreak) and coefficients of input variables obtained 
from multiple linear regression

No. Parameter Linear regression coeffi cients
1 A; burden (m)

Corresponding regression 
coeffi cients of the input 

variables

6.075808
2 B; spacing (m) –1.81371
3 D; hole depth (m) –0.27086
4 E; blasthole inclination to horizontal 0.641112
5 F; high-explosive percentage 0.536875
6 G; ANFO percentage 1.954375
7 H; stemming (m) –0.01341
8 K; powder factor 0.665464
9 L; delay per row (milliseconds) –0.04076
10 M; hole-to-hole delay (milliseconds) 0.041225
11 N; no. of rows 0.075211
12 O; no. of free faces –0.25939

Output variable:
Q; backbreak Regression constant –3.14

TABLE 3

Correlation between actual vs predicted following training and validation phases 
using different ANN architectures

Model Architecture Training R2 Validation R2

12-2-1 0.98 0.97
12-3-1 0.97 0.96
12-4-1 0.98 0.95
12-5-1 0.98 0.93
12-6-1 0.98 0.97
12-7-1 0.98 0.92

3.2. Training and validation of ANN model for predicting 
backbreak

A three-layered ANN was developed in MATLAB. The input layer contained 12 neurons 
and a bias node and the output layer comprised a single output neuron for backbreak. Various 
architectures were trained by varying the number of nodes in the hidden layer. The best model 
architecture with a minimum sum of squared error (SSE) and the highest correlation (R2) was 
retained for further analysis. Various model architectures and their correlation for training and 
validation data of the output variables are shown in Table 3. Among these, the 12-2-1 network 
architecture was the simplest, with greater correlation (in equal measure) in the training and 
validation phases. Graphic comparisons of predicted and measured outputs in the training phase 
using the 12-2-1 ANN architecture are shown in Fig. 2. Fig. 3 shows a plot of actual against 
predicted values of backbreak from the validation phase.
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4. Sensitivity analysis

To analyse the sensitivity of backbreak to input parameters, a sensitivity analysis was carried 
out using the trained neural network model. The relative strength of effects (RSE) values were 
calculated for each input ranging from –1 to 1 (Monjezi et al., 2010). RSE is a type of parameter 
utilised to predict the relative significance of input factors compared to output units (Monjezi 
& Dehghani, 2008).
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Fig. 2. Measured and predicted backbreak from the 12-2-1 ANN model during training

The larger the absolute value of RSE, the greater the effect of the corresponding input on 
the output. The RSE values plotted against the input variables are shown in Fig. 4. Factors with 
higher absolute RSE values (i.e. greater than 0.5 or less than –0.5) were identified as the most 
sensitive positive and negative factors in controlling backbreak. The overtraining of some ANN 
architectures (12-3-1, 12-5-1, and 12-7-1) is reflected by divergent RSE values of burden (A), 
spacing (B), and, to some degree, of high explosive (F) and ANFO (G). However, all seven models 
yielded the same consistent RSE values for certain input variables. Depth of hole (D), stemming 
(H), delay/row (L), h-h delay (M), and number of rows (N) were declared insensitive variables, 
while inclination (E), powder factor (K), and number of free faces (O) were unanimously declared 
the most sensitive variables by all six ANN architectures in this study.

5. Results and discussion

The 12-2-1 architecture proved to be the best model for this case, with minimum error 
(highest correlation) in both the training and validation stages, and was therefore retained to 
assess the sensitivity of the backbreak. Sensitivity analysis suggested that by decreasing burden 
(A), inclination (E), powder factor (K), and number of free faces (O) with positively strong RSE 
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values a decrease in backbreak has to occur. Similarly backbreak will also decrease with increased 
values of O: the number of free faces with negatively strong RSE values (i.e. less than –0.5). 
Since the number of free faces is an uncontrollable factor, while an increase in the quantity of 
high explosives could have an adverse effect on cost, these factors were ignored.

Row-to-row delay and number of rows showed no effect on backbreak, possibly because 
the number of rows in this case was less than or equal to two. Several new blasting designs were 
formulated based on this information. The sensitive parameters were varied accordingly and 12 
geometrical blast patterns (Annex C) were devised to minimise backbreak. Blasthole inclination 
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Fig. 3. Actual vs predicted backbreak in the validation phase using 12-2-1 ANN

Fig. 4. Relative strength effects (RSEs) of variables on backbreak
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played a major role, one that has been ignored in previous models, in controlling backbreak at 
the Dewan Cement limestone quarry. The correlation of the ANN model was higher (0.98 and 
0.97) than that of the support vector machine (SVM) model presented by Mohammadnejad et al. 
(2013). The importance of blasthole inclination is supported by other empirical studies (Bhalchan-
dra, 2011; Smith et al., 2001) for reducing backbreak. Geological features, such as sedimentary 
layering in the quarry, were constant; therefore, geological properties such as bedding angle were 
not included. However, where required, geology such as the layering of limestone beds and their 
orientations may be incorporated in the model to make it more robust. Backbreak was reduced 
from 8 to 0.5 m by: 1) reducing the blast-hole inclination from 85º to 75º; 2) reducing the burden 
to obtain a spacing-to-burden ratio of 1.5 as opposed to the previous ratio of 1.32. The powder 
factor was reduced from 0.62 to 0.55 kg/m3; as a consequence, the cost per ton was also reduced 
from Pakistani Rs. 24/ton to Rs. 18/ton, which increased the yield of blasted material from 5 to 
6 tons/kg of explosive.

6. Conclusions

To summarise, a 12-2-1 ANN prediction model for backbreak outperformed linear regression 
in modelling the backbreak phenomenon. The network was trained using 30 blast case patterns 
and validated by 10 blast cases from the Dewan Cement quarry in Hattar, Pakistan. The model 
showed a correlation of 0.98 for training data and 0.97 for validation data. Sensitivity analysis 
showed that the most sensitive geometrical parameters for controlling backbreak phenomenon 
are, in decreasing order: powder factor, blasthole inclination, and burden. It was concluded that 
by reducing the blasthole inclination from 85º to 75º and maintaining the burden at 2/3 of spac-
ing, backbreak was reduced from 8 to 0.5 m.
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Annex A: Training data from the Dewan Cement limestone quarry
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1 2 3 4 5 6 7 8 9 10 11 12 13
3.00 4.00 16.16 85.00 25.99 74.01 2.90 1.21 0.00 25.00 1.00 1.00 2.5
3.00 4.00 16.16 85.00 29.41 70.59 2.90 1.14 0.00 25.00 1.00 1.00 2.0
3.00 4.00 16.16 85.00 20.00 80.00 2.90 1.31 0.00 25.00 1.00 2.00 2.5
3.00 4.00 12.80 80.00 20.00 80.00 3.00 1.33 75.00 50.00 3.00 3.00 3.0
3.00 4.00 16.16 85.00 21.82 78.18 2.90 1.35 50.00 25.00 3.00 1.00 6.0
3.00 4.00 16.16 85.00 18.92 81.08 2.80 1.37 0.00 50.00 1.00 3.00 3.5
3.50 4.50 16.16 85.00 12.50 87.50 2.90 1.27 0.00 25.00 1.00 1.00 6.0
3.00 4.00 9.45 75.00 11.11 88.89 2.90 1.36 0.00 50.00 1.00 1.00 2.5
2.50 3.50 12.80 80.00 25.00 75.00 2.30 1.29 0.00 25.00 1.00 2.00 0.5
3.50 4.50 16.16 85.00 10.60 89.40 2.90 1.24 50.00 50.00 3.00 1.00 6.0
3.00 4.00 12.80 80.00 12.00 88.00 2.40 1.36 50.00 25.00 2.00 2.00 2.5
3.00 4.00 12.80 80.00 13.04 86.96 2.10 1.33 50.00 25.00 2.00 1.00 4.0
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1 2 3 4 5 6 7 8 9 10 11 12 13
3.00 4.00 16.16 85.00 17.81 82.19 2.80 1.26 100.00 50.00 2.00 1.00 4.0
3.00 4.00 9.45 75.00 9.58 90.42 2.20 1.34 50.00 25.00 2.00 3.00 2.5
3.00 4.00 12.80 80.00 12.50 87.50 2.50 1.36 50.00 25.00 2.00 1.00 4.5
3.00 4.00 12.80 80.00 12.79 87.21 2.50 1.33 0.00 25.00 1.00 2.00 2.0
3.00 4.00 9.45 75.00 17.36 82.64 2.50 1.24 0.00 25.00 1.00 2.00 0.5
3.00 4.00 16.16 85.00 13.49 86.51 2.50 1.40 0.00 25.00 1.00 1.00 7.0
3.00 4.00 9.45 75.00 17.24 82.76 2.20 1.25 0.00 75.00 1.00 2.00 0.0
3.00 4.00 9.45 75.00 14.90 85.10 2.20 1.29 0.00 50.00 1.00 2.00 2.5
3.00 4.00 12.80 80.00 14.53 85.47 2.20 1.35 0.00 25.00 1.00 1.00 4.0
3.00 4.00 9.45 75.00 16.71 83.29 2.20 1.27 0.00 25.00 1.00 2.00 1.0
3.00 4.00 9.45 75.00 23.78 76.22 2.20 1.23 0.00 25.00 1.00 2.00 0.0
3.00 4.00 12.80 80.00 16.94 83.06 2.50 1.35 50.00 25.00 2.00 1.00 3.5
3.00 4.00 9.45 75.00 17.72 82.28 2.20 1.25 50.00 25.00 3.00 2.00 0.0
3.00 4.00 12.80 80.00 13.79 86.21 2.50 1.30 0.00 25.00 1.00 2.00 1.0
3.00 4.00 12.80 80.00 16.60 83.40 2.50 1.31 100.00 50.00 2.00 1.00 4.0
3.00 3.50 6.09 70.00 26.02 73.98 2.50 1.30 50.00 25.00 2.00 2.00 1.0
3.00 4.00 6.09 70.00 20.00 80.00 2.70 1.24 0.00 25.00 1.00 1.00 1.0
3.00 4.00 9.45 75.00 15.29 84.71 2.10 1.28 0.00 75.00 1.00 2.00 1.5
3.00 4.00 16.16 85.00 16.67 83.33 2.90 1.38 0.00 25.00 1.00 1.00 8.0
3.50 4.50 12.80 80.00 21.51 78.49 3.00 1.21 100.00 50.00 2.00 1.00 3.0
3.00 4.00 12.80 80.00 14.29 85.71 2.70 1.36 50.00 25.00 2.00 2.00 5.0
3.00 4.00 9.45 75.00 14.29 85.71 2.10 1.27 50.00 25.00 2.00 2.00 2.0
3.00 4.00 12.80 80.00 14.44 85.56 2.50 1.22 50.00 25.00 2.00 2.00 1.0
3.00 4.00 9.45 75.00 18.10 81.90 2.20 1.24 0.00 50.00 1.00 2.00 1.0
3.00 4.00 9.45 75.00 16.73 83.27 2.20 1.27 0.00 25.00 1.00 2.00 1.0
3.50 4.00 16.16 85.00 13.39 86.61 3.00 1.32 0.00 75.00 1.00 1.00 8.0
3.00 4.00 12.80 80.00 14.46 85.54 2.50 1.28 0.00 25.00 1.00 2.00 1.0
3.00 3.50 6.09 70.00 15.57 84.43 2.50 1.28 50.00 25.00 2.00 2.00 0.0

Annex B: Validation data from the Dewan Cement limestone quarry
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1 2 3 4 5 6 7 8 9 10 11 12 13
3 4.0 13 85 17 83 2.9 0.8  0 25 1 1 8.0
4 4.5 10 80 21 79 3.0 0.5  100 50 2 1 3.0
3 4.0 10 80 14 86 2.7 0.7  50 25 2 2 5.0
3 4.0  9 80 15 85 2.5 0.5  50 25 2 2 1.0
3 4.0 10 75 14 86 2.1 0.6  50 25 2 2 2.0
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1 2 3 4 5 6 7 8 9 10 11 12 13
3 4.0 10 75 18 82 2.2 0.5  0 50 1 2 1.0
3 4.0 10 75 17 83 2.2 0.6  0 25 1 2 1.0
4 4.0 13 85 13 87 3.0 0.7  0 75 1 1 8.0
3 4.0 16 80 15 85 2.5 0.6  0 25 1 2 1.0
3 3.5  8 70 16 84 2.5 0.6  50 25 2 2 0.0

Annex C: Post-sensitivity analysis of blast design
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1 2 3 4 5 6 7 8 9 10 11 12 13
3 4.5 10 75  8 92 2.0 0.6 50 50 1 3 1.0
3 4.5  7 75 15 85 2.2 0.5 75 25 2 1 0.5
3 4.5 16 75 13 87 2.2 0.6 50 25 1 2 1.0
3 4.5 10 80 17 83 2.1 0.6 75 25 1 2 1.0
3 4.5 10 75 12 88 2.2 0.5 50 25 1 2 0.5
3 4.5  7 75 14 86 2.1 0.5 50 25 1 3 0.0
3 4.5 10 75 14 86 2.8 0.5 75 50 2 2 1.0
3 4.5 13 75 14 86 2.5 0.6 50 25 1 3 0.0
3 4.5 16 75 11 89 2.4 0.6 50 25 1 2 1.0
3 4.5 10 75 15 85 2.3 0.5 75 50 1 3 0.0
3 4.5 13 75 12 88 2.3 0.5 75 25 1 3 0.0
3 4.5 10 75 13 87 2.3 0.6 50 25 1 2 0.5
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