PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Complex Complement Circuit Design of Four Inputs Based on DNA Strand Displacement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, DNA strand displacement technology has become an integral part of DNA computing, which is proved that the complement circuit played an important role in computer circuits. In this paper, a four-bit complement logic circuit based on DNA strand displacement is designed and simulated. The simulation results show that the designed circuit is reliable and the four-bit complement logic circuit based on DNA strand displacement also indicates that the DNA strand displacement has bright future in the construction of large-scale logic circuits.
Wydawca
Rocznik
Strony
181--194
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • College of Electrical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
  • College of Electrical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
autor
  • School of Information Management, Zhengzhou University, Zhengzhou, China
autor
  • College of Electrical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
autor
  • College of Electrical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
autor
  • College of Electrical and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
Bibliografia
  • [1] Srinivas N, Ouldridge T E, et al. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Research, 2013;41(22):10641. doi:10.1093/nar/gkt801.
  • [2] Qian L, Winfree E. Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science . 2011;332(6034):1196-1201. doi:10.1126/science.1200520.
  • [3] Wang, Yanfeng; Tian, Guihua, Hou, Hewei, Ye, Mengmeng, Cui, Guangzhao. Simple Logic Computation Based on the DNA Strand Displacement. Journal of Computational and Theoretical Nanoscience, Volume 11, Number 9, September 2014, pp. 1975-1982(8). doi:10.1166/jctn.2014.3596.
  • [4] Sun, Junwei; Yin, Quan; Shen, Yi. Compound synchronization for four chaotic systems of integer order and fractional order. Europhysics Letters, 2014, 106(4) article id. 40005. doi:10.1209/0295-5075/106/40005.
  • [5] Zhang D Y, Winfree E. Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society, 2009, 131(47):17303-17314. doi:10.1021/ja906987s.
  • [6] Zhang D Y, Turberfield A J, Yurke B, et al.. Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 2007, 318(5853):1121-1125. doi:10.1126/science.1148532.
  • [7] Seelig G, Soloveichik D, Zhang D Y, et al. Enzyme-free nucleic acid logic circuits. science, 2006, 314 (5805):1585-1588. doi:10.1126/science.1132493.
  • [8] Chen Y J, Dalchau N, Srinivas N, et al. Programmable chemical controllers made from DNA. Nature nanotechnology, 2013, 8(10):755-762. doi:10.1038/nnano.2013.189.
  • [9] Jing Yang, Shuoxing Jiang, Xiangrong Liu, Linqiang Pan, and Cheng Zhang. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates. ACS Appl. Mater. Interfaces, 2016, 8(49):34054-34060. doi:10.1021/acsami.6b10266.
  • [10] Wang Y, Tian G, Hou H. Simple Logic Computation Based on the DNA Strand Displacement. Journal of Computational and Theoretical Nanoscience. 2014, 11(9):1975-1982. doi:10.1166/jctn.2014.3596.
  • [11] Matthew R, DAVID P, et al. Design and analysis of DNA strand displacement devices using probabilistic model checking. The Royal Society Interface, 2012, 7(72):1470-1485. doi:10.1098/rsif.2011.0800.
  • [12] Gaber R, Lebar T, Majerle A. et al. Designable DNA-binding domain enable construction of logic circuit in mammalian cells. Nature chemical biology. 2014, 10(3):203-208. doi:10.1038/nchembio.1433.
  • [13] Phillips A, Cardelli L. A programming language for composable DNA circuits. Journal of the Royal Society Interface, 2009, 6(Suppl 4):S419-S436. doi:10.1098/rsif.2009.0072.focus.
  • [14] Eckhoff G, Codrea V, Ellington A D, et al. Beyond allostery: catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. Journal of Systems Chemistry, 2010,1(1):13. doi:10.1186/1759-2208-1-13.
  • [15] Qian L, Winfree E. A simple DNA gate motif for synthesizing large-scale circuits. Journal of the Royal Society Interface. 2011, 8(62):1281-1297. doi:10.1098/rsif.2010.0729.
  • [16] Lund K, Manzo A J, Dabby N, et al. Molecular robots guided by prescriptive landscapes. Nature, 2010, 465(7295):206-210. doi:10.1038/nature09012.
  • [17] Wang Y, Tian G, Hou H. Simple Logic Computation Based on the DNA Strand Displacement. Journal of Computational and Theoretical Nanoscience. 2014,11(9):1975-1982. doi:10.1166/jctn.2014.3596.
  • [18] Genot A J, Bath J, Turberfield AJ. Combinatorial Displacement of DNA Strands: Application to Matrix Multiplication and Weighted Sums. Angewandte Chemie International Edition. 2013, 125(4):1227-1230. doi:10.1002/anie.201206201.
  • [19] Lebar T, Majerle A, Ster B, et al. Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nature chemical biology, 2014, 10(3):203-208. doi:10.1038/nchembio.1433.
  • [20] Yang X, Tang Y, Traynor S M, et al. Regulation of DNA strand displacement using an allosteric DNA toehold. Journal of the American Chemical Society, 2016, 138(42):14076-14082. doi:10.1021/jacs.6b08794.
  • [21] Zhang X, Ying N, Shen C, et al. Fluorescence resonance energy transfer-based photonic circuits using single-stranded tile self-assembly and DNA strand displacement. Journal of Nanoscience and Nanotechnology, 2017, 17(2):1053-1060. doi:10.1166/jnn.2017.12656.
  • [22] Zhang X, Zhang W, Zhao T, et al. Design of logic circuits based on combinatorial displacement of DNA strands. Journal of Computational and Theoretical Nanoscience, 2015,12(7):1161-1164. doi.10.1166/jctn.2015.3867.
  • [23] Jing Yang, Chen Dong, Yafei Dong, Shi Liu, Linqiang Pan, and Cheng Zhang. Logic Nanoparticle Beacon Triggered by the Binding-Induced Effect of Multiple Inputs. ACS Appl. Mater. Interfaces, 2014, 6(16):14486-14492. doi:10.1021/am5036994.
  • [24] Linqiang Pan, Zhiyu Wang, Yifan Li, Fei Xu, Qiang Zhang, Cheng Zhang. Nicking enzyme-controlled toehold regulation for DNA logic circuits. Nanoscale, 2017, 9:18223-18228. doi:10.1039/C7NR06484E.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c8c3e05-65ba-4ff1-9b4e-b130b899784d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.