PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risk to built property posed by transportation of liquid gasses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An assessment of risk posed by a road transportation of liquefied gases to roadside property is considered. The attention is focused on an estimation of the probability of thermal damage to a roadside object. Such damage can be caused by a boiling-liquid expanding-vapour explosion (BLEVE) of a road tank. It is suggested to estimate this probability by a combined application of stochastic simulation and deterministic models used to predict a thermal effect of a BLEVE fireball. A development of a fragility function expressing the probability of ignition of the roadside object is discussed. The fragility function is integrated into the simulation-based procedure of an estimation of the thermal damage probability. The approach proposed in this study is illustrated by an example which considers an assessment of thermal damage to a reservoir built in the vicinity of a road used for transportation of liquefied gases.
Rocznik
Strony
43--50
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Vilnius Gediminas Technical University, Vilnius, Lithuania
  • Vilnius Gediminas Technical University, Vilnius, Lithuania
Bibliografia
  • [1] Abbasi, T. & Abbasi, S.A. (2007). The Boiling Liquid Expanding Vapour Explosion (BLEVE): Mechanism, Consequence Assessment, Management. Journal of Hazardous Materials 141, 3, 489-519.
  • [2] Babrauskas, V. (2003). Ignition Handbook. Fire Science Publishers, Issaquah.
  • [3] Birk, A.M. (1996). Hazards from Propane BLEVESs: An Update and Proposal for Emergency Responders. Journal of Loss Prevention in the Process Industries 9, 2, 173-181
  • [4] Casal, J. (2008). Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants. Elsevier, Amsterdam.
  • [5] CCPS (1994). Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs. Center for Chemical Process Safety of AIChE, New York.
  • [6] CCPS (1995). Guidelines for Chemical Transportation Risk Analysis. Center for Chemical Process Safety of AIChE, New York.
  • [7] CCPS (2005). Guidelines for Chemical Process for Chemical Process Quantitative Risk Analysis. 2nd ed. Center for Chemical Process Safety of AIChE, New York.
  • [8] CPD (2005). Methods for the Calculation of Physical Effects due to Releases of Hazardous Materials (Liquids and Gases) – ‘Yellow Book’. Publication Series on Dangerous Substances (PGS2). Committee for the Prevention of Disasters, The Hague.
  • [9] CPR (2005). Methoden voor het Bepalen van Mogelijke Schade aan Mensen en Goederen door Het Vrijkomen van Gevaarlijke Stiffen – ‘Green Book’. Commissie van preventie van rampen door gevaarlijke stiffen, Den Haag.
  • [10] Landucci, G., Tugnoli, A., Busini, V., Derudi, M., Rota, R. & Cozzani, V. (2011) The Viareggio LPG accident: Lessons learnt. Journal of Loss Prevention in the Process Industries. 24, 4, 466– 476.
  • [11] Ministrertwo transportu (2011). Raport Nr PKBWK/2/2011 z badabia wypadku kat. A 04 zaistniałego w dniu 08 listopada 2010 r. o godz. 0530 w stacji Białystok w okręgu nastawni wykonawczey Bł1 w torze nr 1a, rozjazd nr 7 w km 175, linii kolejowej 006 Zielonka – Kuźnica Białystocka, obszar zarządcy infrastruktury PKP Polskie Linie Kolejowe S.A. Zakład Linii Kolejowych w Białymstoku. Państwowa Komisja Badania Wypadków kolejowych, Warszawa
  • [12] Oggero, A., Darbra, R.M., Munoz., M., Planas, E. & Casal, J. (2006). A Survey of Accidents Occurring During the Transport of Hazardous Substances by Road and Rail. Journal of Hazardoud Materials, A133, 1-3, 1-7.
  • [13] Paltrinieri, N., Landucci, G., Molag, M., Bonvicini, S., Spadoni, G. & Cozzani, V. (2009). Risk Reduction in Road and Rail LPG Transportation by Passive Fire Protection. Journal of Hazardous Materials 167, 1-3, 332-344.
  • [14] Papazoglou, I.A. & Aneziris, O.N. (1999). Uncertainty Quantification in the Health Consequences of the Boiling Liquid Expanding Vapour Explosion. Journal of Havardous Materials A67, 3, 217-235.
  • [15] Planas-Cuchi, E, Gasulla, N., Ventosa, A., Casal, J. (2004). Explosion of a Road Tanker Containing Liquefied Natural Gas. Journal of Loss Prevention in Process Industries 17, 1-3, 315-321.
  • [16] Prugh, R.W. (1994). Quantitative Evaluation of Fireball Hazards. Process Safety Progress 13, 2, 83-91.
  • [17] Smith, P.D. (2010). Blast Walls for Structural Protection against Hight Explosive Threats: A Review. International Journal of Protective Structures 1, 1, 67-54.
  • [18] Tauseef, S.M., Abbasi, T. & Abbasi, S.A. (2010). Risks of Fire and Explosion Associated with the Increasing Use of Liquefied Petroleum Gas. Journal of Failure Analysis and Prevention 10, 4, 322-333.
  • [19] Tewarson, A. (2002). Generation of Heat and Chemical Compounds in Fires. In: SFPE Handbook of Fire Protection Engineering, 5th ed., Quincy, MA: NFPA & SFPE, 3-87-3-161.
  • [20] Vaidogas, E.R. & Linku÷, L. (2012). Sitting the Barrier Aimed at Protecting Roadside Property from Accidental Fires And Explosions on Road: A Pre-Optimisation Stage. The Baltic Journal of Road and Bridge Engineering 7, 4, 277-287.
  • [21] Vaidogas, E.R., Linkut÷, L. & Stulgys, D. (2012). Simulation-Based Predicting the Position of Road Tank Explosions. Part I: Data and Models. Transport. 27, 1, 14-24.
  • [22] Vaidogas, E.R., Linkut, L. & Stulgys, D. (2012). Simulation-Based Predicting the Position of Road Tank Explosions. Part II: A Case Study. Transport 27, 2, 118-128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c8b3603-d0c7-4232-b774-19afa7bb8537
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.