PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Normal tissue objective (NTO) tool in Eclipse treatment planning system for dose distribution optimization

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The purpose of this study was to determine the best normal tissue objective (NTO) values based on the dose distribution from brain tumor radiation therapy. Material and methods: The NTO is a constraint provided by Eclipse to limit the dose to normal tissues by steepening the dose gradient. The multitude of NTO setting combinations necessitates optimal NTO settings. The Eclipse supports manual and automatic NTOs. Fifteen patients were re-planned using NTO priorities of 1, 50, 100, 150, 200, and 500 in combination with dose fall-offs of 0.05, 0.1, 0.2, 0.3, 0.5, 1 and 5 mm-1. NTO distance to planning target volume (PTV), start dose, and end dose were 1 mm, 105%, and 60%, respectively, for all plans. In addition, planning without the NTO was arranged to find out its effect on planning. The prescription dose covered 95% of the PTV. Planning was evaluated using several indices: conformity index (CI), homogeneity index (HI), gradient index (GI), modified gradient index (mGI), comprehensive quality index (CQI), and monitor unit (MU). Differences among automatic NTO, manual NTO, and without NTO were evaluated using the Wilcoxon signed-rank test. Results: Comparisons obtained without and with manual NTO were: CI of 0.77 vs. 0.96 (p = 0.002), GI of 4.52 vs. 4.69 (p = 0.233), mGI of 4.93 vs. 3.95 (p = 0.001), HI of 1.10 vs. 1.10 (p = 0.330), and MU/cGy of 3.44 vs. 3.42 (p = 0.460). Planning without NTO produced a poor conformity index. Comparisons of automatic and manual NTOs were: CI of 0.92 vs. 0.96 (p = 0.035), GI of 5.25 vs. 4.69 (p = 0.253), mGI of 4.46 vs. 3.95 (p = 0.001), HI of 1.09 vs. 1.10 (p = 0.004), MU/cGy of 3.31 vs. 3.42 (p = 0.041). Conclusions: Based on these results, manual NTO with a priority of 100 and dose fall-off 0.5 mm-1 was optimal, as indicated by the high dose reduction in normal tissue.
Rocznik
Strony
99--106
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Regional General Hospital of NTB Province, 84371, Mataram, West Nusa Tenggara, Indonesia
  • Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA
Bibliografia
  • 1. Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol. 2017;19(2):270-280. https://doi.org/10.1093/neuonc/now166
  • 2. National Brain Tumor Society. Current treatments for brain tumors. Natl. Brain Tumor Soc. 2017. Accessed from National brain tumor society. Current Treatments for Brain Tumors. https://braintumor.org/wp-content/assets/2017_NBTS_CurrentTreatmentOptions_083017.Pdf
  • 3. Anam C, Soejoko DS, Haryanto F, Yani S, Dougherty G. Electron contamination for 6 MV photon beams from an Elekta linac: Monte Carlo simulation. Journal of Physics and Its Applications. 2020;2(2):97-101. https://doi.org/10.14710/jpa.v2i2.7771
  • 4. Rusthoven KE, Pugh TJ. Stereotactic body radiation therapy for inoperable lung cancer. JAMA. 2010;303(23):2354-2355. https://doi.org/10.1001/jama.2010.777
  • 5. Lorentini S, Amelio D, Giri MG, et al. IMRT or 3D-CRT in glioblastoma? A dosimetric criterion for patient selection. Technol Cancer Res Treat. 2013;12(5):411-420. https://doi.org/10.7785/tcrt.2012.50034
  • 6. Dunlop A, Welsh L, McQuaid D, et al. Brain-sparing methods for IMRT of head and neck cancer. PloS One. 2015;10(3):e0120141. https://doi.org/10.1371/journal.pone.0120141
  • 7. Herman TDLF, Ahmad S, Vlachaki MT. Intensity modulated radiation therapy versus three dimensional conformal radiation therapy for treatment of high grade glioma: a radiobiological modeling study. J Xray Sci Technol. 2010;18(4):393-402. https://doi.org/10.3233/XST-2010-0270
  • 8. Yani S, Budiansah I, Pratama SH, Rhani MF, Anam C, Haryanto F. Evaluation of the dosimetric characteristics of 10 MV flattened and unflattened photon beams in a heterogeneous phantom. Int J Radiat Res. 2021;19(4):835-841. https://doi.org/10.29242/ijrr.19.4.835
  • 9. Corkum MT, Mitchell S, Venkatesan V, Read N, Warner A, Palma DA. Does 5 + 5 equal better radiation treatment plans in head and neck cancers? Advances in Radiation Oncology. 2019;4(4):683-688. https://doi.org/10.1016/j.adro.2019.06.001
  • 10. Xhaferllari I, Wong E, Bzdusek K, Lock M, Chen JZ. Automated IMRT planning with regional optimization using planning scripts. J Appl Clin Med Phys. 2013;14(1):176-191. https://doi.org/10.1120/jacmp.v14i1.4052
  • 11. Wang D, Denittis A, Hu Y. Strategies to optimize stereotactic radiosurgery plans for brain tumors with volumetric‐modulated arc therapy. J Appl Clin Med Phys. 2020;21(3):45-51. https://doi.org/10.1002/acm2.12818
  • 12. Jiménez-Puertas S, Sánchez-Artuñedo D, Hermida-López M. Assessment of the Monitor Unit Objective tool for VMAT in the Eclipse treatment planning system. Rep Pract Oncol Radiother. 2018;23(2):121-125. https://doi.org/10.1016/j.rpor.2018.02.001
  • 13. Fogliata A, Reggiori G, Stravato A, et al. RapidPlan head and neck model: The objectives and possible clinical benefit. Radiat Oncol. 2017;12(1):73. https://doi.org/10.1186/s13014-017-0808-x
  • 14. Fogliata A, Thompson S, Stravato A, Tomtis S, Scorsetti M, Cozzi L. On the gEUD biological optimization objective for organs at risk in Photon Optimizer of Eclipse treatment planning system. J Appl Clin Med Phys. 2018;19(1):106-114. https://doi.org/10.1002/acm2.12224
  • 15. Varian Medical System. Eclipse photon and electron algorithms reference guide. Varian Medical Systems, Inc. 2015. 3100 Hansen Way Palo Alto, CA 94304-1038 United States of America
  • 16. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3):S10-S19. https://doi.org/10.1016/j.ijrobp.2009.07.1754
  • 17. Antero AJ, Marika PK. Spatially-variant normal tissue objective for radiotherapy. Varian Medical Systems Int Ag (Ch). 2013; EP2038010. https://www.freepatentsonline.com/EP2038010B1.html
  • 18. Cao T, Dai Z, Ding Z, Li W, Quan H. Analysis of different evaluation indexes for prostate stereotactic body radiation therapy plans: conformity index, homogeneity index and gradient index. Precision Radiation Oncology. 2019;3(3):72-79. https://doi.org/10.1002/pro6.1072
  • 19. Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys. 2003;55(5):1409-1419. https://doi.org/10.1016/S0360-3016(02)04599-6
  • 20. Shaw E, Kline R, Gillin M, et al. Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231-1239. https://doi.org/10.1016/0360-3016(93)90548-A
  • 21. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105:194-201. https://doi.org/10.3171/sup.2006.105.7.194
  • 22. Ohtakara K, Hayashi S, Hoshi H. Dose gradient analyses in linac-based intracranial stereotactic radiosurgery using paddick's gradient index: Consideration of the optimal method for plan evaluation. J Radiat Res. 2011;52(5):592-599. https://doi.org/10.1269/jrr.11005
  • 23. Sheng, K., Molloyb, J. A., Larnera, J. M., Reada P. W., 2007, A dosimetric comparison of non-coplanar IMRT versus Helical Tomotherapy for nasal cavity and paranasal sinus cancer, Radiotherapy and Oncology, vol. 82(2), pp. 174-178, https://doi.org/10.1016/j.radonc.2007.01.008
  • 24. Rosenwald JC, Gaboriaud G, Pontvert D. La radiothhrapie conformationnelle principes et classification. Cancer/Radiothérapie. 1999;3(5):367-377. https://doi.org/10.1016/S1278-3218(00)87975-5
  • 25. Shaw E, Scott C, Souhami L, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291-298. https://doi.org/10.1016/s0360-3016(99)00507-6
  • 26. Caldeira A, Trinca WC, Flores TP, et al. The influence of normal tissue objective in the treatment of prostate cancer. J Med Imag Radiat Sci. 2020;51(2):312-316. https://doi.org/10.1016/j.jmir.2020.02.006
  • 27. Bell J P, Patel P, Higgins K, McDonald MW, Roper J. Fine-tuning the normal tissue objective in Eclipse for lung stereotactic body radiation therapy. Med Dosim.2018;43(4):344-350. https://doi.org/10.1016/j.meddos.2017.11.004
  • 28. Xu L, Xu Y, Chen X, Xie X, Liang B, Dai J. A new homogeneity index definition for evaluation of radiotherapy plans. J Appl Clin Med Phys. 2019;20(11):50-56. https://doi.org/10.1002/acm2.12739
  • 29. Blonigen BJ, Steinmetz RD, Levin L, et al. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996-1001. https://doi.org/10.1016/j.ijrobp.2009.06.006
  • 30. Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81(1):18-24. https://doi.org/10.1016/j.radonc.2006.08.024
  • 31. Gong Y, Wang J, Bai S, Jiang X, Xu F. Conventionally-fractionated image-guided intensity modulated radiotherapy (IG-IMRT): A safe and effective treatment for cancer spinal metastasis. Radiat Oncol. 2008;3(11):1-10. https://doi.org/10.1186/1748-717X-3-11
  • 32. Eric JH. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys. 2006;65(1):1-7. https://doi.org/10.1016/j.ijrobp.2006.01.027
  • 33. Kry SF, Salehpour M, Followill DS, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;62(4):1195-1203. https://doi.org/10.1016/j.ijrobp.2005.03.053
  • 34. Van Timmeren JE, Ehrbar S, Chamberlain M, et al. Single-isocenter versus multiple-isocenters for multiple lung metastases: evaluation of lung dose. Radiother Oncol. 2022;166:189-194. https://doi.org/10.1016/j.radonc.2021.11.030
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c876c48-9fef-4a1d-af28-be4eb7407aa0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.