PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulations of the behavior of a pipeline made from three different types of materials on a landslide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents numerical analyses of the behavior of pipelines made from various materials (steel, polypropylene, composite) under landslide conditions. Landslides are phenomena most commonly occurring in foothill and mountainous areas, and pipelines located on slopes can sustain damage during the landslide process. To determine the nature and extent of potential damage, numerical simulations were conducted based on advanced computational methods. The analysis employed the Drucker-Prager constitutive soil model. Numerical analyses make it possible to determine the deformation and stress states in pipelines without the need for costly experimental studies. By comparing simulation results for different materials, it is possible to assess the suitability of various pipes for placement on slopes.
Słowa kluczowe
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • AGH University of Krakow, Faculty of Drilling, Oil and Gas, Poland
Bibliografia
  • [1] Zhou X.Y., Guo Y.H., Lv X.H., Yang Y.: Study on Effects of Different Factors on Pipelines Risk under Landslide. Industrial Safety and Environmental Protection, 38, 2012, pp. 42–44.
  • [2] Xue H., Yang X.Q.: Design and Construction of Sino-Burma Oil-Gas Pipeline in Typical Geological Hazard Areas. Oil & Gas Storage and Transportation, 32, 2013, pp. 1320–1324.
  • [3] Ho D., Wilbourn N., Vega A., Tache J.: Safeguarding a Buried Pipeline in a Landslide Region. Pipelines 2014, Portland Oregon, 3–6 August 2014, pp. 1162–1174. https://doi.org/10.1061/9780784413692.105.
  • [4] Lin D., Lei Y., Xu K.F. et al.: An Experiment on the Effect of a Transverse Landslide on Pipelines. Acta Petrolei Sinica, 32, 2011, pp. 728–732.
  • [5] Lin D., Xu K.F., Huang R.Q. et al.: Landslides Classification of Pipeline for Transporting Oil and Gas. Welded Pipe and Tube, 32, 2009, pp. 66–68.
  • [6] Wang L., Deng Q.L.: Mechanical Analysis on the Safety of Gas-Transporting Pipeline Caused by Landslide for Deformation. Journal of Engineering Geology, 18, 2010, pp. 340–345.
  • [7] Kinash O., Najafi M.: Large-Diameter Pipe Subjected to Landslide Loads. Journal of Pipeline Systems Engineering and Practice, 3, 2012: 1–7. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000091.
  • [8] Magura M., Brodniansky J.: Experimental Research of Buried Pipelines. Procedia Engineering, 40, 2012, pp. 50–55. https://doi.org/10.1016/j.proeng.2012.07.054.
  • [9] Zhao X.Y., Zhao Y.: Strain Response Analysis of Oil and Gas Pipelines Subject to Lateral Landslide. Journal of Natural Disasters, 23, 2014, pp. 250–256.
  • [10] Huang K., Lu H.F., Wu S.J. et al.: The Stress Analysis of Buried Gas Pipeline Crossing the Landslide. Chinese Journal of Applied Mechanics, 32, 2015, pp. 689–693.
  • [11] Liu W.Q., Zheng J., Wu H.G. et al.: Experimental Study on Effect of Orthogonal Landslide on Pipe by Model Simulation. Railway Engineering, 6, 2015, pp. 117–120.
  • [12] ANSYS Inc.: ANSYS Documentation. 2024.
  • [13] Więckowski Z.: The Material Point Method in Large Strain Engineering Problems. Computer Methods in Applied Mechanics and Engineering, 193(39–41), 2004, pp. 4417–4438. https://doi.org/10.1016/j.cma.2004.01.035.
  • [14] Hao J.B., Liu J.P., Jing H.Y., Zhang H., Shen F., Tong H., Liu L.: A Calculation of Landslide Thrust Force to Transverse Pipeline. Acta Petrolei Sinica, 33(6), 2012, pp. 1093–1097. https://doi.org/10.7623/syxb201206025.
  • [15] Calvetti F., di Prisco C., Nova R.: Experimental and Numerical Analysis of Soil-Pipe Interaction. Journal of Geotechnical and Geoenvironmental Engineering, 130, 2004, pp. 1292–1299. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1292).
  • [16] Li H., Xu Z., Yang Y.H., et al.: Strength Failure Analysis of Buried Piping Loaded with Landslide. Process Equipment & Piping, 49, 2012, pp. 54–57.
  • [17] Alam S., Allouche E., Bartlett C. et al.: Experimental Evaluation of Soil-Pipe Friction Coefficients for Coated Steel Pipes. Pipelines 2013 Conference, Fort Worth, 22–26 June 2013, pp. 360–371. https://doi.org/10.1061/9780784413012.034.
  • [18] Dezfooli M., Abolmaali A., Razavi M.: Coupled Nonlinear Finite-Element Analysis of Soil-Steel Pipe Structure Interaction. International Journal of Geomechanics, 15, 2015, art. 04014032. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000387.
  • [19] Vazouras P., Dakoulas P., Karamanos S.A.: Pipe-Soil Interaction and Pipeline Performance under Strike-Slip Fault Movements. Soil Dynamics and Earthquake Engineering, 72, 2015, pp. 48–65. https://doi.org/10.1016/j.soildyn. 2015.01.014.
  • [20] Deng D.M., Zhou X.H., Shen Y.P.: Calculation of Pipeline Inner Force and Distortion during Transverse Landslide Body. Oil & Gas Storage and Transportation, 17, 1998, pp. 18–22.
  • [21] Griffiths D.V., Lane P.A.: Slope Stability Analysis by Finite Elements. Géotechnique, 49, 1999, pp. 387–403. https://doi.org/10.1680/geot.1999.49.3.387.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c8685f0-8f4d-4e80-a411-33d1e09071b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.