PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response of Camelina sativa Oil to Different Levels of N-P-K and Compost Fertilizers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was conducted during the two winter seasons (2018/2019&2019/2020) to investigate the effect of NPK and compost fertilizers on the Camelina sativa plant under Egyptian ecology. The fertilizer levels of NPK were 0, 25, 50, 75 and 100%, recommended doses, whereas compost was applied at 6, 8 and 10 m3/fed to investigate the effect of these fertilizers and the interaction of both chemical and organic fertilizers on the vegetative growth, oil yield and oil components percentage, especially Linolenic acid (ω-3). The obtained results indicated that the application of 100% NPK as well as 10 m3 of compost produced the highest mean values of all vegetative characteristics compared to unfertilized plants at both samples in the two growing seasons and the other treatments. On the other hand, the results showed that all NPK treatments, i.e. 25, 50, 75, and 100% NPK significantly increased seed yield (g/plant) as compared to control, the mean values were 3.06, 4.70, 9.09 and 10.20 g/plant compared to 1.84 g/plant, respectively, for the 1st season and 3.11, 4.48, 9.27 & 10.27 g/plant comparing to 1.80 of control for the 2nd season. Compost treatments significantly increased the seed yield; the mean values were 5.10, 5.72, 5.88 and 6.42 g/plant in the 1st season and 5.09, 5.73, 5.99 and 6.32 g/plant in the 2nd season for fertilization with 0, 6, 8 and 10 m3/Fed., respectively. The maximum mean values were obtained by compost at 10 m3/fed. The interaction treatment between 100% NPK and 10 m3/fed showed the maximum mean value of seed yield which recorded 10.51 and 10.78 g/plant for the 1st and 2nd seasons, respectively. In contrast, the lowest values of seed yield were obtained from unfertilized plant which recorded 1.09 and 1.04 g/plant for the 1st and 2nd seasons, respectively. The promising effect of NPK fertilizer on fixed oil % and yield was evident with NPK 100%, 52.53% and 52.83% fixed oil, whereas yield was 408.63 and 413.68 l/fed.), followed by 75% NPK which produced fixed oil percentage and yield 46.82, 46.77% as well as 207.29 and 208.06 l/fed for the first and second season, respectively, compared with other treatments and control. The highest fixed oil percentages and yield (l/fed) were recorded with NPK at 100% and compost at 10 m3/fed during both seasons.
Słowa kluczowe
Rocznik
Strony
260--270
Opis fizyczny
Bibliogr. 64 poz., tab.
Twórcy
  • Faculty of Agriculture, Cairo University, Rd, Oula, Giza District, Giza Governorate, Egypt
  • Faculty of Agriculture, Cairo University, Rd, Oula, Giza District, Giza Governorate, Egypt
  • National Research Centre, 33 El Buhouth St., Ad Doqi, Dokki, Cairo Governorate, Egypt
  • National Research Centre, 33 El Buhouth St., Ad Doqi, Dokki, Cairo Governorate, Egypt
Bibliografia
  • 1. A.O.AC. 1970. Official Methods of Analysis of the Association of Official Analytical Chemists. 11th Edition, Washington, D.C., 1015p.
  • 2. Abbadi J., and Gerendás J. 2011. Effects of phosphorus supply on growth, yield, and yield components of safflower and sunflower. J. Plant Nutr. 34:1769–1787. doi:10.1080/01904167.2011.600405.
  • 3. Abdelaziz M.E., Hanafy Ahmed A.H. Shaaban, M.M. and Pokluda, R. 2007. Fresh weight and yield of lettuce as affected by organic manure and biofertilizers. Conference of organic farming, Czech Univ. Agric.,Czech Republic, 212-214.
  • 4. Adams R.P.. 2001. Identification of Essential oil components by Gas Chromatography Quadrupole Mass Spectroscopy. Allured Publishing Coropration. Carol Stream, USA, 456 p.
  • 5. Adugna G. 2018. A review on impact of compost on soil properties, water use and crop productivity. Agricultural Science Research Journal. 4(3): 93-104.
  • 6. Agegnehu M. and Honermeier B. 1997. Effects of seeding rates and nitrogen fertilization on seed yield, seed quality and yield components of false flax (Camelina sativaCrantz.). Die Bodenkultur 48: 15-20.
  • 7. Akbari G.A., Scarisbrick D.S. and Peat W.T. 2001. Soybean (Glycine max L. merrill) yield and yield components response to nitrogen supply and wither changes in South-East of England. Journal of Agriculture and Rural Development, 3(1), 15–32.
  • 8. Akhtar N., Gupta K., Goyal D. and Goyal A. 2016. Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energ 35:489-511. https://doi.10.1002/ep.12257
  • 9. Amanullah M. and Sukhdves M. 2011. Seed yield and yield components response of rape (B. napus) Verus Mustard (B. juncea) to sulphur and potassium fertilizer application in Northwest Pakistan. J. Plant Nutr. 34,1164-1174.
  • 10. Argyropoulou K., Salahas G., Hela D. and Papasavvas A. 2015. Impact of nitrogen deficiency on biomass production, morphological and biochemical characteristics of sweet basil (OctimumBasilicumL.) plants, cultivated aeroponically. Agriculture & Food, 3: 32-42.
  • 11. Association of Official Analytical Chemists International. 1970. Official Methods of Analys 11th Edition,edn. AOAC, Washington, D.C., 1015 p.
  • 12. Bashan Y., Ream Y., Levanovy H. and Sade A.. 1989. Nonspecific responses in plant growth, yield and root colonization or non cereal crop plant to inoculation with Azospirillumbrasilense, Can. J. Bot., 67, 1317-1324.
  • 13. Besmer Y.L. and Koide R.T.. 1999. Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majusL.) flowers. Mycorrhiza. 9:161-166.
  • 14. Bilalis D., Roussis I., Fuentes F., KakaboukiI. andTravlos I.. 2017 Organic Agriculture and Innovative Crops under Mediterranean Conditions. NotulaeBotanicaeHortiAgrobotanici Cluj-Napoca, 45(2): 323-331.
  • 15. Black C.A., Evans D.D., White J.L., Ensminger L.E. and Clark F.E..1965 Methods of Soil Analysis, part 2. Argon. Amer. Soc. Of Argon. Inc. Madison, Wisc, 256 p.
  • 16. Brand-Williams W., Cuvelier M.E. and Berset C. 1995. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol . 28(1):2530.
  • 17. Budin J.T., Breene W.M. and Putnam D.H.. 1995. Some compositional properties of camelina (Camelina sativa L. Crantz.) seeds and oils. J. Am. Oil Chem. Soc. 72: 309_315.
  • 18. Bugnarug C. and Borcean I.. 2000. A study on the effect of fertilizers on the crop and oil content of Camelina sativa L. LucraiStiintifice _ Agricultura, Universitatea de StiinteAgricolesimedicinaVeterinara a Banatului Timisoara 32: 541-544.
  • 19. Cardinali A. and Nason G. 2013. Costationarity of locally stationary time series using costat. Journal of Statistical Software. 55(1): 1-22.
  • 20. ChristieW.W. 1993. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. In: Advances in Lipid Methodolgy, Christie, W.W. (ed.). Oil Press: Dundee, UK,PP 69-111.
  • 21. Cottenie D., Verloo M., Kiekens L., Velgh G. and Camerlynk, R..1982 Chemical Analysis of Plants and Soils. State Univ. Ghent, Belgium, pp. 44-45.
  • 22. Crowley J. G. and Frohlich, A.. 1998. Factors affecting the composition and use of camelina. A Teagasc publication. Crops Research Centre, Oak Park, Carlow, Ireland.
  • 23. Czarnik M., Jarecki W. and Bobrecka-Jamro D.. 2017. The effects of varied plant density and nitrogen fertilization on quantity and quality yield of Camelina sativa L. Emirates Journal of Food and Agriculture 29(12), 988
  • 24. Dubois M., Gilles K. A., Hamilton J. K., Rebers P.A. and Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
  • 25. Duncan D. B..1955 Multiple range and multiple F tests. Biometrics. 11(1): 1-42.
  • 26. Egle K., Manske G., Römer W. and Vlek P.L.G. 1999. Improved phosphorus efficiency of three new wheat genotypes from CIMMYT in comparison with an older Mexican variety. J Plant Nutr. Soil Sci. 1999; 162: 353-358.
  • 27. Fageria N.K. 2009. The Use of Nutrients in Crop Plants. CRC Press, Boca Raton, FL., USA., ISBN13: 9780429150777, Pages: 448.
  • 28. Fageria N.K. and Baligar V.C.. 1997b. Upland rice genotypes evaluation for phosphorus use efficiency. J. Plant Nutr. 20:499–509. doi:10.1080/01904169709365270.
  • 29. Farhad I. S. M., Islam M. N., Hoque S. andBhuiy M.S. I.. 2010 Role of potassium and sulphur on the growth, yield and oil content of soybean (Glycine max L.), An Academic Journal of Plant Sciences, 3, 2: 99–103.
  • 30. Fleisher D.H., Wang Q., Timlin D.J., Chun J.A. and Reddy V.R.. 2013. Effects of carbon dioxide and phosphorus supply on potato dry matter allocation and canopy morphology. J. Plant Nutr. 36:566–586. doi:10.1080/01904167.2012.751998
  • 31. Gebauer S.K., Psota T.L., Harris W.S. and Kris-EthertonP.M.. 2006. n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J.
  • 32. Clin. Nutr., 83 (Suppl. 6), 1526–1535.
  • 33. Helgi O. and Rolfe S. A.. 2005. The Physiology of Flowering Plants. 4th Ed., Cambridge University Press, Cambridge UK, 100-106.
  • 34. Henriksen B.I.F., Lundon E., Abrahamsen U. and Eltun, R.. 2009. Nutrient supply for organic oilseed crops, and quality of potential organic protein feed for ruminants and poultry. Agronomy Research 7(Special issue II), 592-598.
  • 35. Hocking P.J. and Pinkerton A.. 1993 Phosphorus nutrition of linseed (Linumusitatissimum L.) as affected by nitrogen supply: Effects on vegetative development and yield components. Field Crops Res. 32:101-114. doi:10.1016/0378-4290(93)90023-G
  • 36. Hoitink H.A.J. and Grebus M.E.. 1994 Status of biological control of plant disease with composts. Sci. Util, 2; 5-12.
  • 37. Mostafa H.S., Gouda T.M. Dawoud and Ashraf S. M.. 2019 Studies on the impact of NPK fertilization, compost and ascorbic acid on chemical and biological composition of dragonhead (Dracocephalummoldavica) plants. Current Science International,8(2): 378-393.
  • 38. Hussein M.S., EL-Sherbeny S.E., Khalil M. Y., Naguib N.Y. and Aly S.M. 2006 Growth characters and chemical constituents of DracocephalummoldavicaL. plants in relation to compost fertilizer and planting distance. Sci. Hort., 108: 322-331.
  • 39. Jackson M.L..1973 Soil chemical analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA, 498p.
  • 40. Joshi SK, Ahamada S, Meher LC, Agarwal A, Nasim M (2017). Growth and yield response of camelina sativa to inorganic fertilizers and farmyard manure in hot semi-arid climate of India. Adv. Plants. Agric. Res., 7(3): 305309.
  • 41. Khali M.Y., Naguiby N. and EL-Sherbeny S.E.. 2002. Effect of Tageteserecta L. to some foliar application under compost levels. Arab Univ. J. Agric. Sci., Ain Shams Univ Cairo, 10: 939964.
  • 42. Khan G.R. and Scheinmann F. 1978. Some recent advances in physical methods for analysis and characterization of polyunsaturated fatty acids. Prog. Chem. Fats Lipids. 15(4):343-367.
  • 43. Marschner H. 1995. Mineral nutrition of higher plants. Academic Press, San Diego, USA.
  • 44. Medina J., Monreal C., Barea J.M., Arriagada C., Borie F. and Cornejo P..2015 Crop residue stabilization and application to agricultural and degraded soils: A review. Waste Manag 42: 41-54.
  • 45. Mota, A.S.,de Lima A.B., Albuquerque Th. L.F., Silveira, T.S., do Nascimento J.L.M.,da Silva, J.K.R., Ribeiro A.F., Maia J.G.S. and Bastos G.N.T..2015 Antinociceptive activity and toxicity evaluation of fatty oil from Plukenetiapolyadenia Mull. Arg. (Euphorbiaceae). Molecules. 20(5): 7925-7939.
  • 46. Mtui G.Y..2009 Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol, 8 (8), pp. 1398-1415
  • 47. Pande R.C., Singh M., Agrawal S.K. and Khan R.A. 1970. Effect of different levels of irrigation, nitrogen and phosphorus on growth, yield and quality of linseed (Linumusitatissimum Linn.). Indian J. Agron. 15:125-130.
  • 48. Punam D.H., Budin J.T., Field L.A., BreeneW.M.. 1993 In: Janick, J., Simon, J.E. (Eds.), Camelina: a Promising Low Input Oilseed. Wiley, New York, pp. 314-322.
  • 49. Rantala P. R., Vaajasaari K., Juvonen R., Schultz E., Joutti A. andMakela-Kurtto R.. 1999 Composting of forest industry wastewater sludges for agriculture use. Water Sci. Technol., 40: 187-194.
  • 50. Reddya A.R., Chaitanya K.V. andVivekanandanb M.. 2004 Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189-1202.
  • 51. Rogério F., Silva T.R.B., Santos J.I., and PoletineJ.P.. 2013. Phosphorus fertilization influences grain yield and oil content in crambe. Ind. Crops Prod. 41: 266268. doi:10.1016/j.indcrop.2012.04.016
  • 52. Shehata S.A. and El-Helaly M.A. 2010 Effect of compost, humic acid and amino acid on yield of snap beans, Journal of HorticulturalScience&Omamental Plants, vol. 2, no. 2, pp. 107-110.
  • 53. Shonnard, D.R., Williams, L. and Kalnes, T.L. 2010. Camelina-derived jet fuel and diesel: Sustainable advanced biofuels. Environ. Prog. Sustain. Energy 29: 382-392.
  • 54. Snedecor M.N. and Walker D.A..1986 Statstical Methods. Iowa state University Press, Ames Iowa, USA, 593p.
  • 55. Solis A., Berti M.T., Wilckens R., Fischer S., Gonzalez W. and Johnson B.L.. 2009 Camelina (Camelina sativa L.) seed yield, response to nitrogen, sulfur, and phosphorus in South Central Chile. In: Cermak, S.C., Berti, M.T. (Eds.), 21st Annual AAIC Meeting-The Next Generation of Industrial Crops, Processes, and Products. Hotel Termas de Chillan, Chile, November 14–19, p. 56.
  • 56. Solis A., Vidal I., Paulino L., Johnson B.L. and Berti M.T. 2013. Camelina seed yield response to nitrogen, sulfur, and phosphorus fertilizer in South Central Chile. Ind. Crop Prod. 44: 132-138.
  • 57. Starling M.F., Wood C.W. and Weaver D.B. 1988 Starter nitrogen and growth habit effects on lateplanted soybean, Agronomy Journal, 90(5), 658-662.
  • 58. Tapiero H., Couvreur G.N., Ba P. and TewK.D.. 1999 Polyunsaturated fatty acids PUFA and eicosanoids in human health and pathologies. Biomed. Pharmacother, 56, 215-222.
  • 59. Win M.M..1996 Vegetable soybean yield response to different nitrogen rates, AVRDC-TOP 9 Training Report, Kasetsart University, Bangkok, Thailand.
  • 60. Yadava U.L..1986 A rapid and nondestructive method to determine chlorophyll in intact leaves. Horticulture Science. 21:1449-1450.
  • 61. Zadernowski R., Budzynski W., Nowak-Polakowska H., Rashed A.A. and Jankowski K. 1999 Effect of fertilization on the composition of lipids from false flax (Camelina sativa L. Cr.) and crambe (CrambeabissinicaHochst.). Rosliny Oleiste 20: 503-510.
  • 62. Zanetti F., Eynck Ch., Christou M., Krzyżaniak M., Righini D., Alexopoulou E., Stolarski M.J., Van Loo E.N., Puttick D., Monti A.. 2017. Agronomic performance and seed quality attributes of camelina (Camelina sativa L. Crantz) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 107, 602–608.
  • 63. Zubr J. .2003. Qualitative variation of Camelina sativa seed from different locations. Industrial Crops and Products 17(3):161-169
  • 64. Zubr J., 1997. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 6, 113-119.
  • 65. Xie, Y.P., J.Y. Niu, Y.T. Gan, Y.H. Gao, and A.R. Li. 2014. Optimizing phosphorus fertilization promotes dry matter accumulation and P remobilization in oilseed flax. Crop Sci. 54:1729–1736. doi:10.2135/cropsci2013.10.0672
Uwagi
Błędna numeracja w bibliografii (poz. 32).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c84d20c-26f4-43d4-8c6c-9ca02ded53db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.