Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Basic properties of wind wave climate in the Gulf of Riga, the Baltic Sea, are evaluated based on modelled wave fields, instrumentally measured and historical visually observed wave properties. Third-generation spectral wave model SWAN is applied to the entire Baltic Sea for 1990–2021 with a spatial resolution of 3 nautical miles (nmi, about 5.5 km) forced by the wind field of ERA5, to the Gulf of Riga and its entrance area with a resolution of 1 nmi (about 1.85 km), and to nearshore areas of this gulf with a resolution of 0.32 nmi (about 600 m). The calculations are performed for an idealised ice-free climate. Wave properties are represented by 36 directional and 32 frequency bins. The simulations are complemented by five sessions of instrumental measurements in the 2000s and two sets of historical visual wave observations from the island of Ruhnu and the Sõrve Peninsula for 1954–2011. Predominantly representing fetch-limited windseas, the wave climate in the gulf is milder and more intermittent than in the open Baltic Sea. The average significant wave height is mostly in the range of 0.6–0.8 m and peaks at 0.82 m inside the gulf. Typical wave periods are shorter than in the Baltic proper. The spatial pattern of wave heights, with higher wave intensity in the northern and eastern parts of the basin, follows anisotropy in wind conditions. Interannual variations are highly synchronised in different parts of the gulf. Their magnitude is less than 10% of the long-term average wave height. No long-term trend has been found in significant wave height and no distinct decadal variation exists inside the gulf.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
56--77
Opis fizyczny
Bibliogr. 91 poz., map., rys., tab., wykr.
Twórcy
autor
- School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
- School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
- School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
- School of Science, Tallinn University of Technology, Tallinn, Estonia
autor
- Estonian Marine Institute, University of Tartu, Estonia
autor
- Latvian Institute of Aquatic Ecology, Riga, Latvia
autor
- School of Science, Tallinn University of Technology, Tallinn, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
Bibliografia
- 1. Ashton, A., Murray, A.B., Arnault, O., 2001. Formation of coastline features by large—scale instabilities induced by high-angle waves. Nature 414 (6861), 296-300. https://doi.org/10.1038/35104541
- 2. Badulin, S.I., Grigorieva, V.G., 2012. On discriminating swell and wind-driven seas in Voluntary Observing Ship data. J. Geophys. Res.-Oceans 117 (C11), C00J29. https://doi.org/10.1029/2012JC007937
- 3. Baltic Sea Hydrographic Commission, 2013. Baltic Sea Bathymetry Database Version 0.9.3. (Downloaded on 15.02.2020 from http://data.bshc.pro/on).
- 4. Bierstedt, S.E., Hünicke, B., Zorita, E., 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A 67, 29073. https://doi.org/10.3402/tellusa.v67.29073
- 5. Björkqvist, J.V., Kanarik, H., Johansson, M.M., Tuomi, L., 2018b. A wave forecast for the Helsinki archipelago in the Gulf of Finland. 2018 IEEE/OES Baltic International Symposium (BALTIC), June 12-15. Klaipeda, Lithuania. https://doi.org/10.1109/BALTIC.2018.8634863
- 6. Björkqvist, J.V., Lukas, I., Alari, V., van Vledder, P.G., Hulst, S., Pettersson, H., Behrens, A., Männik, A., 2018a. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng. 152, 57-71. https://doi.org/10.1016/j.oceaneng.2018.01.048
- 7. Björkqvist, J.-V., Pärt, S., Alari, V., Rikka, S., Lindgren, E., Tuomi, L., 2021. Swell hindcast statistics for the Baltic Sea. Ocean Sci. 17, 1815-1829. https://doi.org/10.5194/os- 17- 1815- 2021
- 8. Björkqvist, J.V., Rikka, S., Alari, V., Männik, A., Tuomi, L., Pettersson, H., 2020. Wave height return periods from combined measurement-model data: a Baltic Sea case study. Nat. Hazards Earth Syst. Sci. 20 (12), 3593-3609. https://doi.org/10.5194/nhess- 20- 3593- 2020
- 9. Björkqvist, J.V., Tuomi, L., Fortelius, C., Pettersson, H., Tikka, K., Kahma, K.K., 2017. Improved estimates of nearshore wave conditions in the Gulf of Finland. J. Marine Syst. 171, 43-53. https://doi.org/10.1016/j.jmarsys.2016.07.005
- 10. Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res.-Oceans 104 (C4), 7649-7666. https://doi.org/10.1029/98JC02622
- 11. Broman, B., Hammarklint, T., Rannat, K., Soomere, T., Valdmann, A., 2006. Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia 48 (S), 165-184.
- 12. Charles, E., Idier, D., Delecluse, P., Deque, M., Le Cozannet, G., 2012. Climate change impact on waves in the Bay of Biscay. France. Ocean Dynam. 62 (6), 831-848. https://doi.org/10.1007/s10236-012-0534-8
- 13. Christensen, E.D., Johnson, M., Sørensen, O.R., Hasager, C.B., Badger, M., Larsen, S.E., 2013. Transmission of wave Energy through an offshore wind turbine farm. Coast. Eng. 82, 25-46. https://doi.org/10.1016/j.coastaleng.2013.08.004
- 14. Chubarenko, B.V., Leitsina, L.V., Esiukova, E.E., Kurennoy, D.N., 2012. Model analysis of the currents and wind waves in the Vistula Lagoon of the Baltic Sea. Oceanology 52 (6), 748-753. https://doi.org/10.1134/S000143701206001X
- 15. Cieślikiewicz, W., Paplińska-Swerpel, B., 2008. A 44-year hindcast of wind wave fields over the Baltic Sea. Coast. Eng. 55, 894-905. https://doi.org/10.1016/j.coastaleng.2008.02.017
- 16. Davidan, I.N., Lopatoukhin, L.I., Rozhkov, V.A., 1985. Wind Waves in the World Oceans. Gidrometeoizdat, Leningrad (in Russian).
- 17. Dean, R.G., Walton, T.L., Hatheway, D., 2008. Wave setup in U.S. flood insurance studies. Coast. Eng. 5, 926-974. https://doi.org/10.1142/9789814277426_0081
- 18. Dodet, G., Bertin, X., Taborda, R., 2010. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model. 31 (3—4), 120-131. https://doi.org/10.1016/j.ocemod.2009.10.010
- 19. Dvornikov, A.Y., Martyanov, S.D., Ryabchenko, V.A., Eremina, T.R., Isaev, A.V., Sein, D.V., 2017. Assessment of extreme hydrological conditions in the Bothnian Bay, Baltic Sea, and the impact of the nuclear power plant “Hanhikivi-1” on the local thermal regime. Earth Syst. Dynam. 8 (2), 265-282. https://doi.org/10.5194/esd-8-265-2017
- 20. ECMWF, 2006. IFS Documentation — Cy41r2. Operational Implementation 8 March 2016. Part IV: Physical Processes. Accessed on Fabruary 7th , 2023, https://www.ecmwf.int/en/elibrary/79697-ifs-documentation-cy41r2-part-iv-physical-processes.
- 21. Eelsalu, M., Org, M., Soomere, T., 2014. Visually observed wave climate in the Gulf of Riga. The 6th IEEE/OES Baltic Symposium Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, May 26-29, 6887829. IEEE Conference Publications, 10. https://doi.org/10.1109/BALTIC.2014.6887829
- 22. Ekman, M., 1999. Climate changes detected through the world’s longest sea level series. Glob. Planet. Change 21 (4), 215-224. https://doi.org/10.1016/S0921-8181(99)00045-4
- 23. Giudici, A., Jankowski, M.Z., Männikus, R., Najafzadeh, F., Suursaar, Ü., Soomere, T., 2023. A comparison of Baltic Sea wave properties simulated using two modelled wind data sets. Estuar.
- 24. Coast. Shelf Sci. 290, 108401. https://doi.org/10.1016/j.ecss.2023.108401
- 25. Guedes Soares, C., 1986. Assessment of the uncertainty in visual observations of wave height. Ocean Eng. 13 (1), 37-56. https://doi.org/10.1016/0029-8018(86)90003-X
- 26. Guidelines, 1985. Guidelines for Hydrometeorological Stations and Posts. Meteorological observations at stations. Leningrad: Gidrometeoizdat 3 (1), 300 pp. (in Russian).
- 27. Gulev, S.K., Grigorieva, V., 2004. Last century changes in ocean wind wave height from global visual wave data. Geophys. Res. Lett. 31 (24), L24302. https://doi.org/10.1029/2004GL021040
- 28. Gulev, S.K., Grigorieva, V., 2006. Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the Voluntary Observing Ship data. J. Clim. 19 (21), 5667-5685. https://doi.org/10.1175/JCLI3936.1
- 29. Gulev, S.K., Grigorieva, V., Sterl, A., Woolf, D., 2003. Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys. Res.-Oceans 108 (C7), 3236.
- 30. Gulev, S.K., Hasse, L., 1998. North Atlantic wind waves and wind stress fields from voluntary observing ship data. J. Phys. Oceanogr. 28, 1107-1130. https://doi.org/10.1175/1520-0485(1998)028〈1107:NAWWAW〉2.0.CO;2
- 31. Gulev, S.K., Hasse, L., 1999. Changes of wind waves in the North Atlantic over the last 30 years. Int. J. Climatol. 19 (10), 1091-1117. https://doi.org/10.1002/(SICI)1097-0088(199908)19:10〈1091::AID-JOC403〉3.0.CO;2-U
- 32. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J.-N., 1979 to present. Copernicus Climate Change Service (C3S). Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6
- 33. Hogben, N., Dacunka, N.M.C., Olliver, G.F., 1986. Global Wave Statistics. Unvin Brothers, London.
- 34. Hogben, N., Lumb, F.E., 1967. Ocean Wave Statistics; a statistical survey of wave characteristics estimated usually from Voluntary Observing Ships sailing along the shipping routes of the world. H.M.S.O, Ministry of Technology, National Physical Laboratory, London, 263 pp.
- 35. Hünicke, B., Zorita, E., Soomere, T., Skovgaard Madsen, K., Johansson, M., Suursaar, Ü., 2015. Recent change — sea level and wind waves. In: The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, 155-185. https://doi.org/10.1007/978-3-319-16006-1_9
- 36. Jaagus, J., 2009. Long-term changes in frequencies of wind directions on the western coast of Estonia. In: Kont, A., Tõnisson, H. (Eds.), Climate Change Impact on Estonian Coasts. Publication 11/2009. Tallinn: Institute of Ecology, Tallinn University, 11-24 (in Estonian).
- 37. Jaagus, J., Kull, A., 2011. Changes in surface wind directions in Estonia during 1966—2008 and their relationships with largescale atmospheric circulation. Est. J. Earth Sci. 60, 220-231. https://doi.org/10.3176/earth.2011.4.03
- 38. Jaagus, J., Suursaar, Ü., 2013. Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relations to large-scale atmospheric circulation. Est. J. Earth Sci. 62 (2), 73-92. https://doi.org/10.3176/earth.2013.07
- 39. Jahanmard, V., Varbla, S., Delpeche-Ellmann, N., Ellmann, A., 2022. Retrieval of directional power spectral density and wave parameters from airborne LiDAR point cloud. Ocean Eng. 266, 112694. https://doi.org/10.1016/j.oceaneng.2022.112694
- 40. Keevallik, S., 2003. Possibilities of reconstruction of the wind regime over Tallinn Bay. Proc. Estonian Acad. Sci. Eng. 9 (3), 209-219. https://doi.org/10.3176/eng.2003.3.04
- 41. Kelpšait˙e, L., Dailidien˙e, I., Soomere, T., 2011. Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993—2008. Boreal Environ. Res. 16 (Supplement A), 220-232.
- 42. Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14 (8), 1271-1285. https://doi.org/10.1175/1520-0485(1984)014〈1271:OTEOAF〉2.0.CO;2
- 43. Kudryavtseva, N., Kussembayeva, K., Rakisheva, Z.B., Soomere, T., 2019. Spatial variations in the Caspian Sea wave climate in 2002—2013. Est. J. Earth Sci. 68 (4), 225-240. https://doi.org/10.3176/earth.2019.16
- 44. Kudryavtseva, N., Soomere, T., 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth Syst. Dynam. 8 (3), 697-706. https://doi.org/10.5194/esd-8-697-2017
- 45. Kudryavtseva, N., Soomere, T., Männikus, R., 2021. Non-stationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961—2018. Nat. Hazards Earth Syst. Sci. 21 (4), 1279-1296. https://doi.org/10.5194/nhess-21-1279-2021
- 46. Kudryavtseva, N.A., Soomere, T., 2016. Validation of the multimission altimeter wave height data for the Baltic Sea region. Est. J. Earth Sci. 65 (3), 161-175. https://doi.org/10.3176/earth.2016.13
- 47. Lebedev, S.A., Kostianoy, A.G., 2008. Integrated use of satellite altimetry in the investigation of the meteorological, hydrological, and hydrodynamic regime of the Caspian Sea. Terr. Atmos. Ocean. Sci. 19 (1—2), 71-82. https://doi.org/10.3319/TAO.2008.19.1-2.71(SA)
- 48. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer Science & Business Media, Praxis, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79703-6
- 49. Männikus, R., Soomere, T., Kudryavtseva, N., 2019. Identification of mechanisms that drive water level extremes from in situ measurements in the Gulf of Riga during 1961—2017. Cont. Shelf Res. 182, 22-36. https://doi.org/10.1016/j.csr.2019.05.014
- 50. Männikus, R., Soomere, T., Najafzadeh, F., 2022. Refraction may redirect waves from multiple directions into a harbour: a case study in the Gulf of Riga, eastern Baltic Sea. Est. J. Earth Sci. 71 (2), 80-88. https://doi.org/10.3176/earth.2022.06
- 51. Männikus, R., Soomere, T., Viška, M., 2020. Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961—2018. Estuar. Coast. Shelf Sci. 245, 106827. https://doi.org/10.1016/j.ecss.2020.106827
- 52. Massel, S.R., 2013. Ocean Surface Waves: Their Physics and Prediction, 2nd edn. World Scientific, New Jersey, London, Singapore, 692 pp.
- 53. Najafzadeh, F., Kudryavtseva, N., Soomere, T., 2021. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multi-mission satellite altimetry data. Clim. Dynam. 57 (11), 3465-3478. https://doi.org/10.1007/s00382-021-05874-x
- 54. Najafzadeh, F., Kudryavtseva, N., Soomere, T., Giudici, A., 2022. Effect of ice cover on wave statistics and wave-driven processes in the northern Baltic Sea. Boreal Environ. Res. 27, 97-116. http://www.borenv.net/BER/archive/pdfs/ber27/ber27-097-116.pdf.
- 55. Naulin, J.P., Moncoulon, D., Le Roy, S., Pedreros, R., Idier, D., Oliveros, C., 2016. Estimation of insurance-related losses resulting from coastal flooding in France. Nat. Hazards Earth Syst. Sci. 16, 195-207. https://doi.org/10.5194/nhess-16-195-2016
- 56. Nilsson, E., Rutgersson, A., Dingwell, A., Björkqvist, J.-V., Pettersson, H., Axell, L., Nyberg, J., Stromstedt, E., 2019. Characterization of wave energy potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone. Energies 12 (5), 793. https://doi.org/10.3390/en12050793 Oceanologia 66 (2024) 56-77
- 57. Orlenko, L.R., Lopatukhin, L.I., Portnova, G.L. (Eds.), 1984, Studies of the Hydrometeorological Regime of Tallinn Bay. Gidrometeoizdat, Leningrad, 152 pp. (in Russian).
- 58. Pallares, E., Sánchez-Arcilla, A., Espino, M., 2014. Wave Energy balance in wave models (SWAN) for semi-enclosed domains—Application to the Catalan coast. Cont. Shelf Res. 87, 41-53. https://doi.org/10.1016/j.csr.2014.03.008
- 59. Pindsoo, K., Soomere, T., Zujev, M., 2012. Decadal and long-term variations in the wave climate at the Latvian coast of the Baltic Proper. In: Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Present and Future. Climate Change Research, Ocean Observation & Advanced Technologies for Regional Sustainability,”. May 8-11, Klaipėda, Lithuania. IEEE https://doi.org/10.1109/BALTIC.2012.6249160
- 60. Plant, N.G., Griggs, G.B., 1992. Comparison of visual observations of wave height and period to measurements made by an offshore slope array. J. Coast. Res. 8 (4), 957-965.
- 61. Räämet, A., Soomere, T., 2010. The wave climate and its seasonal variability in the northeastern Baltic Sea. Est. J. Earth Sci. 59 (1), 100-113. https://doi.org/10.3176/earth.2010.1.08
- 62. Randmeri, R., 2006. Description of the wave climate of the Gulf of Riga using the WAM wave model. MSc Thesis. Tallinn University.
- 63. Rogers, W.E., Hwang, P.A., Wang, D.W., 2003. Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr. 33 (2), 366-389. https://doi.org/10.1175/1520-0485(2003)033〈0366:IOWGAD〉2.0.CO;2
- 64. Rosenhagen, G., Tinz, B., 2013. New historical data of the southern Baltic Sea coasts. In: Reckermann, M., Köppen, S. (Eds.), 7th Study Conference on BALTEX, 10—14 June 2013, Borgholm, Island of Öland, Sweden, 84 Conference Proceedings, International BALTEX Secretariat, Publication No. 53. Seifert, T., Tauber, F., Kayser, B., 2001. A high-resolution spherical grid topography of the Baltic Sea—revised edition. Baltic Sea Science Congress 2001, Nov. 25—29.
- 65. Sokolov, A.N., Chubarenko, B.V., 2020. Temporal variability of the wind wave parameters in the Baltic Sea in 1979—2018 based on the numerical modeling results. Phys. Oceanogr. 27 (4), 352-363. https://doi.org/10.22449/1573-160X-2020-4-352-363
- 66. Sooäär, J., Jaagus, J., 2007. Long-term changes in the sea ice regime in the Baltic Sea near the Estonian coast. Proc. Estonian Acad. Sci. Eng. 13 (3), 189-200.
- 67. Soomere, T., 2001. Extreme wind speeds and spatially uniform wind events in the Baltic Proper. Proc. Estonian Acad. Sci. Eng. 7 (3), 195-211. https://doi.org/10.3176/eng.2001.3.01
- 68. Soomere, T., 2005. Wind wave statistics in Tallinn Bay. Boreal Environ. Res. 10 (2), 103-118. http://www.borenv.net/BER/archive/pdfs/ber10/ber10-103.pdf
- 69. Soomere, T., 2013. Extending the observed Baltic Sea wave climate back to the 1940s. J. Coast. Res. Special Issue 65, 1969—1974. https://doi.org/10.2112/SI65-333
- 70. Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W., 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci. 8 (1), 37-46. https://doi.org/10.5194/nhess-8-37-2008
- 71. Soomere, T., Bishop, S.R., Viška, M., Räämet, A., 2015. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 62, 163-171. https://doi.org/10.3354/cr0126
- 72. Soomere, T., Keevallik, S., 2001. Anisotropy of moderate and strong winds in the Baltic Proper. Proc. Estonian Acad. Sci. Eng. 7 (1), 35—49. https://doi.org/10.3176/eng.2001.1.04
- 73. Soomere, T., Weisse, R., Behrens, A., 2012. Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci. 8 (2), 287-300. https://doi.org/10.5194/os-8-287-2012
- 74. Soomere, T., Zaitseva, I., 2007. Estimates of wave climate in the northern Baltic Proper derived from visual wave observations at Vilsandi. Proc. Estonian Acad. Sci. Eng. 13 (1), 48-64. https://doi.org/10.3176/eng.2007.1.02
- 75. Suursaar, Ü., 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966—2011. Est. J. Earth Sci. 62 (1), 42-56. https://doi.org/10.3176/earth.2013.05
- 76. Suursaar, Ü., 2015. Analysis of wave time series in the Estonian coastal sea in 2003—2014. Est. J. Earth Sci. 64 (4), 289-304. https://doi.org/10.3176/earth.2015.35
- 77. Suursaar, Ü., Kullas, T., Aps, R., 2012. Currents and waves in the northern Gulf of Riga: measurement and long-term hindcast. Oceanologia 54 (3), 421-447. https://doi.org/10.5697/oc.54-3.421
- 78. Suursaar, Ü., Kullas, T., Otsmann, M., 2002. A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea. Cont. Shelf Res. 22 (14), 2001—2019. https://doi.org/10.1016/S0278-4343(02)00046-8
- 79. Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J., Merilain, M., 2006. Cyclone Gudrun in January 2005 and modeling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ. Res. 11 (2), 143-159. https://www.borenv.net/BER/archive/pdfs/ber11/ber11-143.pdf
- 80. Tavakoli, S., Khojasteh, D., Haghani, M., Hirdaris, S., 2023. A review on the progress and research directions of ocean engineering. Ocean Eng. 272, 113617. https://doi.org/10.1016/j.oceaneng.2023.113617
- 81. The BACC Author Team, 2008. Assessment of climate change for the Baltic Sea basin. Springer Science & Business Media, Berlin, Heidelberg, 473 pp.
- 82. The BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, Heidelberg, New York, Dordrecht, London. https://doi.org/10.1007/978-3-319-16006-1
- 83. Tuomi, L., Kahma, K.K., Pettersson, H., 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16 (6), 451-472. http://www.borenv.net/BER/archive/pdfs/ber16/ber16-451.pdf
- 84. Tuomi, L., Kanarik, H., Björkqvist, J.V., Marjamaa, R., Vainio, J., Hordoir, R., Höglund, A., Kahma, K.K., 2019. Impact of ice data quality and treatment on wave hindcast statistics in seasonally ice-covered seas. Front. Earth Sci. 7, 166. https://doi.org/10.3389/feart.2019.00166
- 85. Tuomi, L., Pettersson, H., Fortelius, C., Tikka, K., Björkqvist, J.-V., Kahma, K.K., 2014. Wave modelling in archipelagos. Coast. Eng. 83, 205-220. https://doi.org/10.1016/j.coastaleng.2013.10.011
- 86. Viška, M., Soomere, T., 2013a. Long-term variations of simulated sediment transport along the eastern Baltic Sea coast as a possible indicator of climate change. In: Reckermann, M., Köppen, S. (Eds.), 7th Study Conference on BALTEX, 10-14 June 2013, Borgholm, Island of Öland, Sweden. International BALTEX Secretariat, Publication No. 53, 99-100.
- 87. Viška, M., Soomere, T., 2013b. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26 (2), 145-156. https://doi.org/10.5200/baltica.2013.26.15
- 88. Wu, J., 2012. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res.-Oceans 87 (C12), 9704-9706. https://doi.org/10.1029/JC087iC12p09704
- 89. Zaitseva-Pärnaste, I., Soomere, T., Tribštok, O., 2011. Spatial variations in the wave climate change in the eastern part of the Baltic Sea. J. Coast. Res. Special Issue 64, 195-199. https://www.jstor.org/stable/26482160
- 90. Zaitseva-Pärnaste, I., Suursaar, Ü., Kullas, T., Lapimaa, S., Soomere, T., 2009. Seasonal and long-term variations of wave conditions in the northern Baltic Sea. J. Coast. Res. Special Issue 56, 277-281. https://www.jstor.org/stable/25737581
- 91. Zijlema, M., van Vledder, G.P., Holthuijsen, L.H., 2012. Bottom friction and wind drag for wave models. Coast. Eng. 65, 19-26. https://doi.org/10.1016/j.coastaleng.2012.03.002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c83bac2-c6cf-415b-ace8-87128820edb0