Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dark channel prior has been successfully applied to solve the blind deblurring problem on different scene images. Since the dark channel of the blurry-noise image is similar to that of the corresponding clear image, the sparsity of the dark channel is less effective for image blind deblurring. Inspired by the fact that a fractional order calculation can inhibit the noise and preserve the texture information of the image, a fractional order dark channel prior is proposed for image deblurring in this paper. It is appropriate for kernel estimation where input images and intermediate images are processed by using a fractional order dark channel prior. Furthermore, the non-convex problem is solved by the half-quadratic splitting method, and some metrics are used for deblurring image quality assessment. Finally, quantitative and qualitative experimental results show that the proposed method achieves state-of-the-art results on synthetic and real blurry images.
Rocznik
Tom
Strony
441--454
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- School of Automation Science and Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, China
autor
- School of Automation Science and Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, China
- Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, Wushan Road, Tianhe District, 510641 Guangzhou, China
autor
- School of Automation Science and Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou, China
Bibliografia
- [1] An, S., Roh, H. and Kang, M. (2020). Long-term residual blending network for blur invariant single image blind deblurring, arXiv: 2007.04543.
- [2] Cho, S. and Lee, S. (2009). Fast motion deblurring, ACM SIGGRAPH Asia 28(5): 1–8.
- [3] Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T. and Freeman, W.T. (2006). Removing camera shake from a single photograph, ACM Transactions on Graphics 25(3): 787–794.
- [4] Fuhai, C., Rongrong, J., Chengpeng, D., Xiaoshuai, S., Chia-Wen, L., Jiayi, J., Baochang, Z., Feiyue, H. and Liujuan, C. (2019). Semantic-aware image deblurring, arXiv: 1910.03853.
- [5] Gao, D., Liu, J.,Wu, R., Cheng, D., Fan, X. and Tang, X. (2019). Utilizing relevant RGB-D data to help recognize RGB images in the target domain, International Journal of Applied Mathematics and Computer Science 29(3): 611–621, DOI: 10.2478/amcs-2019-0045.
- [6] Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., Van Den Hengel, A. and Shi, Q. (2017). From motion blur to motion flow: A deep learning solution for removing heterogeneous motion blur, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 3806–3815.
- [7] He, K., Sun, J. and Tang, X. (2009). Single image haze removal using dark channel prior, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1956–1963.
- [8] Jia, H. and Pu, Y. (2008). Fractional calculus method for enhancing digital image of bank slip, 2008 Congress on Image and Signal Processing, Sanya, China, Vol. 3, pp. 326–330.
- [9] Joshi, N., Zitnick, C.L., Szeliski, R. and Kriegman, D.J. (2009). Image deblurring and denoising using color priors, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1550–1557.
- [10] Kohler, R., Hirsch, M., Mohler, B., Scholkopf, B. and Harmeling, S. (2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database, 2012 European Conference on Computer Vision, Florence, Italy, pp. 27–40.
- [11] Kotera, J., Smidl, V. and Sroubek, F. (2017). Blind deconvolution with model discrepancies, IEEE Transactions on Image Processing 26(5): 2533–2544.
- [12] Kotera, J., Šroubek, F. and Milanfar, P. (2013). Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors, in R. Wilson et al. (Eds), Computer Analysis of Images and Patterns, Springer, Berlin/Heidelberg, pp. 59–66.
- [13] Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D. and Matas, J. (2018). DeblurGAN: Blind motion deblurring using conditional adversarial networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 8183–8192.
- [14] Lai,W.-S., Ding, J.-J., Lin, Y.-Y. and Chuang, Y.-Y. (2015). Blur kernel estimation using normalized color-line priors, 2015 IEEE Conference on Computer Vision and Pattern Recognition CVPR), Boston, USA, pp. 64–72.
- [15] Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N. and Yang, M.H. (2016). A comparative study for single image blind deblurring, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, pp. 1701–1709.
- [16] Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2009). Understanding and evaluating blind deconvolution algorithms, 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pp. 1964–1971.
- [17] Levin, A., Weiss, Y., Durand, F. and Freeman, W.T. (2011). Efficient marginal likelihood optimization in blind deconvolution, 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, pp. 2657–2664.
- [18] Li, B. and Xie, W. (2015). Adaptive fractional differential approach and its application to medical image enhancement, Computers & Electrical Engineering 45(C): 324–335.
- [19] Li, B. and Xie, W. (2016). Image denoising and enhancement based on adaptive fractional calculus of small probability strategy, Neurocomputing 175(Part A): 704–714.
- [20] Li, J. and Lu, W. (2016). Blind image motion deblurring with [...]-regularized priors, Journal of Visual Communication &Image Representation 40(Part A): 14–23.
- [21] Li, P., Prieto, L., Mery, D. and Flynn, P.J. (2019). On low-resolution face recognition in the wild: Comparisons and new techniques, IEEE Transactions on Information Forensics and Security 14(8): 2000–2012.
- [22] Liu, Y., Wang, J., Cho, S., Finkelstein, A. and Rusinkiewicz, S. (2013). A no-reference metric for evaluating the quality of motion deblurring, ACM Transactions on Graphics 32(6): 175:1–175:12.
- [23] Matychyn, I. and Onyshchenko, V. (2021). Time-optimal control of linear fractional systems with variable coefficients, International Journal of Applied Mathematics and Computer Science 31(3): 375–386, DOI: 10.34768/amcs-2021-0025.
- [24] Pan, J., Hu, Z., Su, Z. and Yang, M.H. (2014a). Deblurring text images via [...]-regularized intensity and gradient prior, 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp. 2901–2908.
- [25] Pan, J., Liu, R., Su, Z. and Liu, G. (2014b). Motion blur kernel estimation via salient edges and low rank prior, 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, pp. 1–6.
- [26] Pan, J., Sun, D., Pfister, H. and Yang, M. (2018). Deblurring images via dark channel prior, IEEE Transactions on Pattern Analysis and Machine Intelligence 40(10): 2315–2328.
- [27] Ren, W., Cao, X., Pan, J., Guo, X., Zuo, W. and Yang, M.H. (2016). Image deblurring via enhanced low-rank prior, IEEE Transactions on Image Processing 25(7): 3426–3437.
- [28] Shan, Q., Jia, J. and Agarwala, A. (2008). High-quality motion deblurring from a single image, ACM Transactions on Graphics 27(3): 1–10.
- [29] Sun, L., Cho, S., Wang, J. and Hays, J. (2013). Edge-based blur kernel estimation using patch priors, IEEE International Conference on Computational Photography (ICCP), Cambridge, USA, pp. 1–8.
- [30] Wang, H., Pan, J., Su, Z. and Liang, S. (2018). Blind image deblurring using elastic-net based rank prior, Computer Vision and Image Understanding 168: 157–171.
- [31] Wang, Z., Simoncelli, E.P. and Bovik, A.C. (2003). Multiscale structural similarity for image quality assessment, 37th Asilomar Conference on Signals, Systems Computers, Pacific Grove, USA, Vol. 2, pp. 1398–1402.
- [32] Chen, X., Yang, Q.W. and Wu, J. (2010). Image deblur in gradient domain, Optical Engineering 49(11): 49–49–7.
- [33] Xie, Z. (2016). A primal-dual method with linear mapping for a saddle point problem in image deblurring, Journal of Visual Communication & Image Representation 42: 112–120.
- [34] Xu, L. and Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring, Proceedings of the 11th European Conference on Computer Vision: ECCV’10, Heraklion, Crete, Greece, Part I, pp. 157–170.
- [35] Xu, L., Zheng, S. and Jia, J. (2013). Unnatural L0 sparse representation for natural image deblurring, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 1107–1114.
- [36] Yan, Y., Ren, W., Guo, Y., Wang, R. and Cao, X. (2017). Image deblurring via extreme channels prior, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 6978–6986.
- [37] Yin, M., Gao, J., Tien, D. and Cai, S. (2014). Blind image deblurring via coupled sparse representation, Journal of Visual Communication & Image Representation 25(5): 814–821.
- [38] Zhang, H., Dai, Y., Li, H. and Koniusz, P. (2019). Deep stacked hierarchical multi-patch network for image deblurring, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, pp. 5971–5979.
- [39] Zhichao, F., Yingbin, Z., Hao, Y., Yu, K., Jing, Y. and Liang, H. (2019). Edge-aware deep image deblurring, arXiv: 1907.02282.
- [40] Zhong, L., Cho, S., Metaxas, D., Paris, S. and Wang, J. (2013). Handling noise in single image deblurring using directional filters, 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 612–619.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c80c61d-d852-4745-be34-5431e2d9d777