PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of cryogenic oxygen production unit with exhaust gas bleed for sewage sludge gasification and different oxygen purities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a thermodynamic analysis of the integration of a cryogenic air separation unit into a negative CO2 emission gas power plant. The power cycle utilizes sewage sludge as fuel so this system fits into the innovative idea of bioenergy with carbon capture and storage. A cryogenic air separation unit integrated with the power plant was simulated in professional plant engineering and thermodynamic process analysis software. Two cases of the thermodynamic cycle have been studied, namely with the exhaust bleed for fuel treatment and without it. The results of calculations indicate that the net efficiencies of the negative CO2 emission gas power plant reach 27.05% (combustion in 95.0% pure oxygen) and 24.57% (combustion in 99.5% pure oxygen) with the bleed. The efficiencies of the cycle without the bleed are 29.26% and 27.0% for combustion in 95.0% pure oxygen and 99.5% pure oxygen, respectively. For the mentioned cycle, the calculated energy penalty of oxygen production was 0.235 MWh/kgO2 for the lower purity value. However, for higher purity namely 99.5%, the energy penalty of oxygen production for the thermodynamic cycle including the bleed and excluding the bleed was indicated 0.346 and 0.347 MWh/kgO2, respectively. Additionally, the analysis of the oxygen purity impact on the carbon dioxide purity at the end of the carbon capture and storage installation shows that for the case with the bleed, CO2 purities are 93.8% and 97.6%, and excluding the bleed they are 93.8% and 97.8%, for the mentioned oxygen purities respectively. Insertion of the cryogenic oxygen production installation is required as the considered gas power plant uses oxy-combustion to facilitate carbon capture and storage method.
Rocznik
Strony
63--81
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] United States Environmental Protection Agency. https://www.epa.gov/ (accessed 20 March 2022).
  • [2] Our World in Data. https://ourworldindata.org (accessed 20 March 2022).
  • [3] Chen W., van der Ham L., Nijmeijer A., Winnubst L.: Membrane-integrated oxyfuel combustion of coal: Process design and simulation. J. Membrane Sci. 492(2015), 461–470.
  • [4] Merkel T., Lin H., Wei X., Baker R.: Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membrane Sci. 359(2010), 126–139.
  • [5] Blamey J., Anthony E.J., Wang J., Fennell P.S.: The calcium looping cycle for largescale CO2 capture. Prog. Energ. Combust. Sci. 36(2010), 260–279.
  • [6] Mikielewicz D., Wajs J., Ziółkowski P., Mikielewicz J.: Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat. Energy 97(2016), 11–19.
  • [7] Ziółkowski P., Mikielewicz D., Mikielewicz J.: Increase of power and efficiency of the 900 MW supercritical power plant through incorporation of the ORC. Arch. Thermodyn. 34(2013), 4, 51–71.
  • [8] Ye H., Zheng J., Li Y.: Feasibility analysis and simulation of argon recovery in low oxygen-purity cryogenic air separation process with low energy consumption. Cryogenics 97(2019), 109–121.
  • [9] Fu C., Gundersen T.: Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes. Energy 44(2012), 1, 60–68.
  • [10] Higginbotham P., White V., Fogash K., Guvelioglu G.: Oxygen supply for oxycoal CO2 capture. Energy Proced. 4(2011), 884−891.
  • [11] García-Luna S., Ortiz C., Carro A., Chacartegui R., Pérez-Maqueda L.A.: Oxygen production routes assessment for oxy-fuel combustion. Energy 254(2022), B, 124303.
  • [12] Chorowski M., Gizicki W.: Technical and economic aspects of oxygen separation for oxy-fuel purposes. Arch. Thermodyn. 36(2015), 1, 157–170.
  • [13] Fu Q., Kansha Y., Song C., Liu Y., Ishizuka M., Tsustumi A.: A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants. Appl. Energ. 162(2015), 1114–1121.
  • [14] Aneke M., Wang M.: Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles. Appl. Therm. Eng. 81(2015), 223–231.
  • [15] Kerry F.: Industrial Gas Handbook: Gas Separation and Purification. Taylor and Francis, New York 2006.
  • [16] Portillo E., Gallego Fernández L.M., Vega F., Alonso-Fariñas B., Navarrete B.: Oxygen transport membrane unit applied to oxy-combustion coal power plants: A thermodynamic assessment. J. Environ. Chem. Eng. 9(2021), 4, 105266.
  • [17] Castillo R.: Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Appl. Energ. 88(2011), 5, 1480–1493.
  • [18] Gutiérrez F.A., García-Cuevas L.M., Sanz W.: Comparison of cryogenic and membrane oxygen production implemented in the Graz cycle. Energ. Convers. Manage. 271(2022), 116325.
  • [19] Fu C., Gundersen T.: Recuperative vapor recompression heat pumps in cryogenic air separation processes. Energy 59(2013), 708–718.
  • [20] Tesch S., Morosuk T., Tsatsaronis G.: Comparative evaluation of cryogenic air separation units from the exergetic and economic points of view. Low-temperature Technologies. IntechOpen, 2020. doi: 10.5772/intechopen.85765
  • [21] Yantovski E., Zvagolsky K.N., Gavrilenko V.A.: The cooperate – demo power cycle. Energ. Convers. Manage. 36(1995), 6-9, 861–864.
  • [22] Yantovski E.: Zero emission fuel-fired power plants concept. Energ. Convers. Manage. 37(1996), 6-8, 867–877.
  • [23] Sanz W., Hustad C.-W., Jericha H.: First generation Graz cycle power plant for near-term development. In: Proc.. ASME Turbo Expo 2011, 969–979.
  • [24] Gou C., Cai R., Hong H.: A novel hybrid oxy-fuel power cycle utilizing solar thermal energy. Energy 32(2007), 9, 1707–1714.
  • [25] Ziółkowski P., Madejski P., Amiri M., Kuś T., Stasiak K., Subramanian N., PawlakKruczek H., Badur J., Niedźwiedzki Ł., Mikielewicz D.: Thermodynamic analysis of negative CO2 emission power plant using Aspen Plus, Aspen Hysys, and Ebsilon software. Energies 14(2021), 19, 6304.
  • [26] Ziółkowski P., Stasiak K, Amiri M., Mikielewicz D.: Negative carbon dioxide gas power plant integrated with gasification of sewage sludge. Energy 262(2023), B,125496.
  • [27] Madejski P., Chmiel K., Subramanian N., Kuś T.: Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 15(2022), 3, 887.
  • [28] Regulation of the Minister of Environment of 8 June 2016 on the technical conditions for the qualification of part of the energy recovered from thermal transformation of waste). J. Laws Republic of Poland (in Polish).
  • [29] Badur J.: Five Lectures in Modern Fluid Thermomechanics. Wydawn. IMP PAN, Gdańsk 2005 (in Polish).
  • [30] Kaszuba M., Ziółkowski P., Mikielewicz D.: Thermodynamical analysis of integration of a negative emission power plant cycle with oxygen generation station. In: Proc. 7th Conf. on Contemporary Problems of Thermal Engineering, CPOTE 2022. Silesian UT, Warszawa 2022, 619–630.
  • [31] Ibrahim M., Skaugen G., Ertesvåg I.S.: An extended corresponding states equation of state (EoS) for CCS industry. Chem. Eng. Sci. 137(2015), 572–582.
  • [32] Ebsilon® Professional 15.00, Steag Energy Services GmbH, Flextek 2022.
  • [33] Mikielewicz J., Bieliński H., Mikielewicz D.: Outline of Thermodynamics Wydawn. IMP PAN, Gdańsk 1996 (in Polish).
  • [34] Peng D.-Y., Robinson D.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1976), 1, 59–64.
  • [35] Jesionek K., Chrzczonowski A., Ziółkowski P, Badur J.: Power enhancement of the Brayton cycle by steam utilization. Arch. Thermodyn. 33(2012), 3, 39–50.
  • [36] Badur J., Stajnke M., Ziółkowski P., Jóźwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 40(2019), 3, 3–26.
  • [37] Ziółkowski P.: Porous structures in aspects of transpirating cooling of oxycombustion chamber walls. In: AIP Conf. Proc. AIoP 2077(2019), 020065 .
  • [38] Normann F., Andersson K., Leckner B., Johnsson F.: Emission control of nitrogen oxides in the oxy-fuel process. Prog. Energ. Combust. Sci. 35(2009), 5, 385–397.
  • [39] Ziółkowski P., Zakrzewski W., Kaczmarczyk O., Badur J.: Thermodynamic analysis of the double Brayton cycle with the use of oxy combustion and capture of CO2. Arch. Thermodyn. 34(2013), 2, 23–38.
  • [40] Koohestanian E., Shahraki F.: Review on principles, recent progress, and future challenges for oxy-fuel combustion CO2 capture using compression and purification unit. J. Environ. Chem. Eng. 9(2021), 4, 105777.
  • [41] Banaszkiewicz T., Chorowski M., Gizicki W.: Comparative analysis of oxygen production for oxy-combustion application. Energy Proced. 51(2013), 127–134.
  • [42] Darde A., Prabhakar R., Tranier J.-P., Perrin N.: Air separation and fuel gas compression and purification units for oxy-coal combustion systems. Energy Proced. 1(2009), 527–534.
  • [43] Janusz-Szymańska K., Dryjańska A.: Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit. Energy 85(2015), 45–61.
  • [44] Tafone A., Dal Magro F., Romagnoli A.: Integrating an oxygen enriched waste to energy plant with cryogenic engines and air separation unit: Technical, economic and environmental analysis. Appl. Energ. 231(2018), 423–432.
  • [45] Goto K., Kazama S., Furukawa A., Serizawa M., Aramaki S., Shoji K.: Effect of CO2 purity on energy requirement of CO2 capture process. Energy Proced. 37(2013), 806–812.
  • [46] Murugan A., Brown R.J.C, Wilmot R., Hussain D., Bartlett S., Brewer P.J., Worton D.R., Bacquart T., Gardiner T., Robinson R.A., Finlayson A.: Performing quality assurance of carbon dioxide for carbon capture and storage. J. Carbon Res. 6(2020), 4, 76.
  • [47] Ertesvåg I.E., Madejski P., Ziółkowski P., Mikielewicz D.: Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS. Energy 278(2023), 127690.
  • [48] Kotowicz J., Job M.: Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion. Arch. Thermodyn. 34(2013), 4, 215–233.
  • [49] Serrano J.R., Arnau F.J., García-Cuevas L.M., Gutiérrez F.A.: Coupling an oxygen generation cycle with an oxy-fuel combustion spark ignition engine for zero NOx emissions and carbon capture: A feasibility study. Energ. Convers. Manage. 284(2023), 116973.
  • [50] Wu Z., Yu X., Fu L., Deng J., Hu Z., Li L.: A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery. Energy70(2014), 110–120.
  • [51] Peng J., Li X.: Oxyfuel combustion in IC engines. Internal Combustion Engines – Recent Advances. IntechOpen, 2022. doi: 10.5772/intechopen.107155
  • [52] Kropiwnicki J.: Analysis of start energy of Stirling engine type alpha. Arch. Thermodyn. 40(2019), 3, 243–259.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c7feb1e-7b94-40a6-9c58-3310762aaf9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.