PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of water quality and mercury contamination in Tabukan Selatan Tengah District: Impacts on marine life and human health

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Illegal mining and mercury contamination in Indonesia pose significant challenges to communities and ecosystems, particularly impacting the region’s rich natural resources like gold. The research aims to measure mercury levels in water, sediment, and fish to understand the health risks for the local community. The methodology measured three stations’ water temperature, pH levels, and mercury concentrations. Gold mining activities are the primary source of mercury contamination in the coastal waters and fish of the Tabukan Selatan Tengah District. Mercury levels vary in water samples (0.005 to 0.138 mg/L), sediment samples (0.003 to 0.242 mg/kg), and fish samples (2 to 357μg/g). All samples surpass the water quality standard of 0.001 mg/L, except for sediment samples at points 2 and 3. Mercury concentrations in fish exceed the quality standard of 0.5 μg/g. The distance between sampling sites and gold mining waste disposal areas influences mercury accumulation. In the Tabukan Selatan Tengah District, people consume fish at an average rate of 0.00071918 kg daily. The RQ value in the district is categorized as unsafe for health at points 1 and 2 and safe at points 3 and 4. The study underscores the significant health risks of mercury exposure, especially for communities that consume contaminated fish.
Słowa kluczowe
EN
Twórcy
  • Faculty of Biotechnology, Universitas Kristen Duta Wacana Jl. Dr. Wahidin 6 – 25, 55224 Yogyakarta, Indonesia
  • Faculty of Biotechnology, Universitas Kristen Duta Wacana Jl. Dr. Wahidin 6 – 25, 55224 Yogyakarta, Indonesia
autor
  • Faculty of Biotechnology, Universitas Kristen Duta Wacana Jl. Dr. Wahidin 6 – 25, 55224 Yogyakarta, Indonesia
autor
  • Deparment of Fisheries, Faculty of Agriculture, Gadjah Mada University. Jalan Flora Bulaksumur, 55283 Yogyakarta, , Indonesia
Bibliografia
  • 1. Abera BD, Adimas MA. (2024). Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon, 10(13). https://doi.org/10.1016/j.heliyon.2024.e33905
  • 2. Ali H, Khan E. (2019). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/ webs—Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353–1376. https://doi.org/10.1080/10807039.2018.1469398
  • 3. Canham R, González‐Prieto AM, Elliott JE. (2020). Mercury exposure and toxicological consequences in fish and fish‐eating wildlife from anthropogenic activity in Latin America. Integrated environmental assessment and management, 17(1), 13–26. https://doi.org/10.1002/ieam.4313
  • 4. Dang F, Wang W X. (2012). Why mercury concentration increases with fish size? Biokinetic explanation. Environmental Pollution, 163, 192–198. https://doi.org/10.1016/j.envpol.2011.12.026
  • 5. de Almeida Rodrigues P, Ferrari RG, Dos Santos LN, Junior CAC. (2019). Mercury in aquatic fauna contamination: a systematic review on its dynamics and potential health risks. Journal of Environmental Sciences, 84, 205–218. https://doi.org/10.1016/j.jes.2019.02.018
  • 6. de Melo GV, Neto JAB, Malm O, dos Santos Fernandez MA, Patchineelam SM. (2015). Composition and behaviour of heavy metals in suspended sediments in a tropical estuarine system. Environmental Earth Sciences, 73, 1331–1344. https://doi.org/10.1007/ s12665-014-3491-3
  • 7. Fagherazzi S, Wiberg PL. (2009). Importance of wind conditions, fetch, and water levels on wave‐generated shear stresses in shallow intertidal basins. Journal of Geophysical Research: Earth Surface, 114(F3). https://doi.org/10.1029/2008JF001139
  • 8. Förstner U. (2020). Inorganic sediment chemistry and elemental speciation. In Sediments 61–105. CRC Press.
  • 9. Gewurtz SB, Bhavsar SP, Fletcher R. (2011). Influence of fish size and sex on mercury/PCB concentration: importance for fish consumption advisories. Environment international, 37(2), 425–434. https://doi.org/10.1016/j.envint.2010.11.005
  • 10. Gworek B, Dmuchowski W, Baczewska-Dąbrowska AH. (2020). Mercury in the terrestrial environment: a review. Environmental Sciences Europe, 32(1), 128. https://doi.org/10.1186/s12302-020-00401-x
  • 11. Hidayati N. V., Aziz, A. S. A., Mahdiana, A., & Prayogo, N. A. (2022). Accumulation of heavy metal Cd in water, sediment, and nilem fish (Osteochilus Hasselti) matrix in Tajum River, Banyumas Regency, Central Java. Agritech: Journal of the Faculty of Agriculture, Muhammadiyah University of Purwokerto, 24(2), 174–184. (In Indonesia)
  • 12. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. (2013). Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environmental science & technology, 47(6), 2441–2456. https://doi.org/10.1021/es304370g
  • 13. Jia Y, Wang L, Qu Z, Wang C, Yang Z. (2017). Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environmental Science and Pollution Research, 24, 9379–9386. https://doi.org/10.1007/s11356-017-8606-4
  • 14. Johnson BE, Esser BK, Whyte DC, Ganguli PM, Austin CM, Hunt, JR. (2009). Mercury accumulation and attenuation at a rapidly forming delta with a point source of mining waste. Science of the total environment, 407(18), 5056–5070. https://doi.org/10.1016/j. scitotenv.2009.05.025
  • 15. Jones HJ, Swadling KM, Butler ECV, Macleod CK. (2014). Complex patterns in fish–sediment mercury concentrations in a contaminated estuary: The influence of selenium co-contamination?. Estuarine, Coastal and Shelf Science, 137, 14–22. https://doi.org/10.1016/j.ecss.2013.11.024
  • 16. Lino AS, Kasper D, Guida YS, Thomaz JR, Malm O. (2019). Total and methyl mercury distribution in water, sediment, plankton and fish along the Tapajós River basin in the Brazilian Amazon. Chemosphere, 235, 690–700. https://doi.org/10.1016/j. chemosphere.2019.06.212
  • 17. Liu Y, Zhi L, Zhou S, Xie F. 2020. Effects of mercury binding by humic acid and humic acid resistance on mercury stress in rice plants under high Hg/humic acid concentration ratios. Environmental Science and Pollution Research, 27, 18650–18660. https://doi.org/10.1007/s11356-020-08328-9
  • 18. Makahenggang K. N. H., Rahardjo, D., & Kisworo, K. 2022. Analisis risiko kesehatan merkuri dalam ikan yang di pasarkan di kawasan teluk Kao Halmahera utara: Health risk analysis of mercury in fish marketed in the Kao bay area north Halmahera. Biospecies, 15(2), 39–46.
  • 19. Nakazawa K., Nagafuchi, O., Kawakami, T., Inoue, T., Yokota, K., Serikawa, Y.,... & Elvince, R. (2016). Human health risk assessment of mercury vapor around artisanal small-scale gold mining area, Palu city, Central Sulawesi, Indonesia. Ecotoxicology and Environmental Safety, 124, 155–162.
  • 20. Namieśnik J, Rabajczyk A. (2010). The speciation and physico-chemical forms of metals in surface waters and sediments. Chemical Speciation & Bioavailability, 22(1), 1–24. https://doi.org/10.3184/0 95422910X12632119406391
  • 21. Rachmansyah R., Tonnek, S., Makmur, M., Kamaruddin, K., & Atmomarsono, M. (2017). Distribution of heavy metal mercury (Hg) in the coastal area of ratatotok Bay, Minahasa Regency, North Sulawesi. Indonesian Journal of Fisheries Research, 11(5), 95–107. (In Indonesia)
  • 22. Ravichandran M. (2004). Interactions between mercury and dissolved organic matter––a review. Chemosphere, 55(3), 319–331. https://doi.org/10.1016/j. chemosphere.2003.11.011
  • 23. Tamalawe VPL. (2024). Mercury Concentration in Coastal Waters of Tabukan Selatan Tengah District and Its Implications for Health Risks. Faculty of Biotechnology, Duta Wacana Christian University. 47 pages. Undergraduate Thesis.
  • 24. Uddin S, Khanom S, Islam MR. (2024). Source and distribution of mercury in environment— A Review. Mercury Toxicity Mitigation: Sustainable Nexus Approach, 3–43. https://doi.org/10.1007/978-3-031-48817-7_1
  • 25. Wahidah, S., Idroes, R., Lala, A., & Japnur, A. F. (2019, November). Analysis of mercury and its distribution patterns in water and sediment samples from Krueng Sabee, Panga and Teunom rivers in Aceh Jaya. In IOP Conference Series: Earth and Environmental Science 364(1), 012016. IOP Publishing.
  • 26. Wahyono TE, Mochtar M, Soediono R, Romli M. (2024). The problem of illicit gold mining from the standpoint of a state upholding the rule of law. International Journal of Sustainable Law, 1(1), 29–33.
  • 27. Xu Q, Zhao L, Wang Y, Xie Q, Yin D, Feng X, Wang D. (2018). Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Environmental Pollution, 243, 115–126. https://doi.org/10.1016/j. envpol.2018.08.048
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c7ba7f8-b769-44a7-be76-15c95896ebe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.