PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibilities of Using Bio-Based Nanomaterials in Sustainable Agriculture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Emerging demand for food coupled with increasing agricultural use of hazardous chemicals is propelling development of environmentally sustainable nanotechnologies. Nanoscale materials derived from green sources like plants and microbes could transform agriculture via nanosensors detecting toxins, precise nutrient delivery systems, soil and water monitoring, plant growth promotion and reduced reliance on agrochemicals. Though no single nano-enabled solution offers complete sustainability currently, this analysis explores varied sustainable nanotechnology applications to bolster crop yield, protection and surveillance through innovative farming methods. However, progress commercializing and researching these technologies remains restricted. Elucidating complex nanomaterial behaviors in environments, thoroughly evaluating functionality and distribution plus instituting robust governmental oversight are essential prerequisites for fully harnessing green nanotechnology’s potential to enable sustainable agriculture.
Rocznik
Strony
313--322
Opis fizyczny
Bibliogr. 97 poz., rys., tab.
Twórcy
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, ul. Leszczynskiego 7, 20-069 Lublin, Poland
  • Nicolaus Copernicus University, Collegium Medicum, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
  • Division of Biochemistry and Biogerontology, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, ul. Leszczynskiego 7, 20-069 Lublin, Poland
  • Faculty of Agrobioengineering, Institute of Soil Science, Environment Engineering and Management, University of Life Sciences in Lublin, ul. Leszczynskiego 7, 20-069 Lublin, Poland
Bibliografia
  • 1. Ahmed S, Ahmad M, Swami BL, Ikram S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7(1): 17-28.
  • 2. Alam F, Kim TY, Kim SY, Alam SS, Pramanik P, Kim PJ, Lee YB. 2015. Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Science and Plant Nutrition, 61(4): 664-75.
  • 3. Atkinson NJ, Urwin PE. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63(10): 3523-43.
  • 4. Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS. 2019. Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants. Agronomy, 9(5): 246.
  • 5. Bai L, Zhang S, Chen Q, Gao C. 2017. Synthesis of Ultrasmall Platinum Nanoparticles on Polymer Nanoshells for Size-Dependent Catalytic Oxidation Reactions. ACS Applied Materials & Interfaces, 9(11):9710-17.
  • 6. Behboudi F, Sarvestani Z, Kassaee M, Sanavi S, Sorooshzadeh A. 2018. Improving Growth and Yield of Wheat under Drought Stress via Application of SiO2 Nanoparticles. Journal of Agricultural Science and Technology, 20: 1479-92.
  • 7. Bielach A, Duclercq J, Marhavý P, Benková E.2012. Genetic approach towards the identification of auxincytokinin crosstalk components involved in root development. Philosophical Transactions of the Royal Society B Biological Sciences, 367(1595): 1469-78.
  • 8. Borgatta J, Ma C, Hudson-Smith N, Elmer WH, Plaza Pérez CD, De La Torre-Roche R, ZuverzaMena N, Haynes CL, White JC, Hamers RJ. 2018. Copper Based Nanomaterials Suppress Root Fungal Disease in Watermelon (Citrullus lanatus): Role of Particle Morphology, Composition and Dissolution Behavior. ACS Sustainable Chemistry Enggineering, 6(11): 14847-56.
  • 9. Borišev M, Borišev I, Župunski M, Arsenov D, Pajević S, Ćurčić Ž, Vasin J, Djordjevic A. 2016. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles. PLoS One, 11(11): e0166248.
  • 10. Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W. 2018a. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum. Frontiers in Microbiology, 9: 790.
  • 11. Cai L, Liu M, Liu Z, Yang H, Sun X, Chen J, Xiang S, Ding W. 2018b. MgONPs Can Boost Plant Growth: Evidence from Increased Seedling Growth, MorphoPhysiological Activities, and Mg Uptake in Tobacco (Nicotiana tabacum L.). Molecules, 23(12): 3375.
  • 12. Canton H. 2021. Food and Agriculture Organization of the United Nations—FAO. In: The Europa Directory of International Organizations 2021, https://doi. org/10.4324/9781003179900-41.
  • 13. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. 2011. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces, 83(1): 42-8.
  • 14. Chen T, Zou H, Wu X, Liu C, Situ B, Zheng L, Yang G. 2018. Nanozymatic Antioxidant System Based on MoS2 Nanosheets. ACS Applied Materials & Interfaces, 10(15): 12453-62.
  • 15. Chen Z, Zhao J, Liu Z, Bai X, Li W, Guan Z, Zhou M, Zhu H. 2022. Graphene-Delivered Insecticides against Cotton Bollworm. Nanomaterials (Basel), 12(16): 2731.
  • 16. Cheng J, Sun Z, Yu Y, Li X, Li T. 2019. Effects of modified carbon black nanoparticles on plantmicrobe remediation of petroleum and heavy metal co-contaminated soils. International Journal of Phytoremediation, 21(7): 634-642.
  • 17. Cromwell WA, Yang J, Starr JL, Jo YK. 2014. Nematicidal Effects of Silver Nanoparticles on Rootknot Nematode in Bermudagrass. Journal of Nematology, 46(3): 261-6.
  • 18. Cumplido-Nájera CF, González-Morales S, OrtegaOrtíz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A. 2019. The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scienta Horticulturae, 245: 82-9.
  • 19. Damalas CA, Eleftherohorinos IG. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environment Research & Public Health, 8(5):1402-19.
  • 20. Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M. 2012. Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One, 7(10): e47149.
  • 21. Dawas H, Ali F. 2022. Impact of MgONPs and its Effect on Chlorophyll, Carotene and Leaf Area of Soft Wheat Plant. NeuroQuantology, 20(3): 39-42.
  • 22. Debnath K, Singha K, Pramanik A. 2015. Magnetically separable Fe3O4–SO3H nanoparticles as an efficient solid acid support for the facile synthesis of two types of spiroindole fused dihydropyridine derivatives under solvent free conditions. RSC Advances, 5: 31866-77.
  • 23. Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H. 2014. Some Physiological Responses of Black-Eyed Pea to Iron and Magnesium Nanofertilizers. Communications in Soil Science and Plant Analysis, 45(4): 530-40.
  • 24. Ding X, Zhao Z, Zhang Y, Duan M, Liu C, Xu Y. 2023. Activity Regulating Strategies of Nanozymes for Biomedical Applications. Nano-Micro Small, 19(11): e2207142.
  • 25. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H. 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4): 822-8.
  • 26. El-Ghany MFA, El-Kherbawy MI, Abdel-Aal YA, El-Dek SI, Abd El-Baky T. 2021. Comparative Study between Traditional and Nano Calcium Phosphate Fertilizers on Growth and Production of Snap Bean (Phaseolus vulgaris L.) Plants. Nanomaterials (Basel), 11(11): 2913.
  • 27. Faizan M, Alam P, Rajput VD, Faraz A, Afzal S, Ahmed SM, Yu F-Y, Minkina T, Hayat S. 2023. Nanoparticle Mediated Plant Tolerance to Heavy Metal Stress: What We Know? Sustainability, 15(2): 1446.
  • 28. Faizan M, Bhat JA, Noureldeen A, Ahmad P, Yu F. 2021. Zinc oxide nanoparticles and 24-epibrassinolide alleviates Cu toxicity in tomato by regulating ROS scavenging, stomatal movement and photosynthesis. Ecotoxicology and Environmental Safety, 218: 112293.
  • 29. Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry, 48(12): 909-30.
  • 30. Gould F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology, 43: 701-26.
  • 31. Guntzer F, Keller C, Meunier JD. 2010. Determination of the silicon concentration in plant material using Tiron extraction. New Phytologist, 188(3): 902-6.
  • 32. Hakim IA. 2019. Sustainable agriculture: connections between human health, ecosystem health, ethics and economics. Nutrition in Clinical Practice, 34(1): 84-96.
  • 33. He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. 2012. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials, 33(30): 7547-55.
  • 34. Huang X, Kurata N, Wei X, Wang ZX, Wang A, et al. 2012. A map of rice genome variation reveals the origin of cultivated rice. Nature, 490(7421): 497-501.
  • 35. Hulkoti NI, Taranath TC. 2014. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces, 121: 474-83.
  • 36. Kah M, Hofmann T. 2014. Nanopesticide research: current trends and future priorities. Environment International, 63: 224-35.
  • 37. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Durán N, Rai M. 2014. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Materials Letters, 115: 13-7.
  • 38. Kashem MA, Kawai S. 2007. Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Science and Plant Nutrition, 53(3): 246-51.
  • 39. Kathiravan V, Ravi S, Ashokkumar S. 2014. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochimica Acta Part: A, Mololecular and Biomolecular Spectroscopy,130: 116-21.
  • 40. Konczyk J, Żarska S, Ciesielski W. 2019. Adsorptive removal of Pb(II) ions from aqueous solutions by multi-walled carbon nanotubes functionalised by selenophosphoryl groups: Kinetic, mechanism, and thermodynamic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 575: 271-82.
  • 41. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. 2002. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology & Bioengineering, 78(5): 583-8.
  • 42. Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623-7.
  • 43. Latef A, Srivastava A, El-sadek M, Kordrostami M, Tran L. 2018. Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions. Land Degradation & Development, 29: 1065-73.
  • 44. Li L, Tutone AF, Drummond RS, Gardner RC, Luan S. 2001. A novel family of magnesium transport genes in Arabidopsis. Plant Cell, 13(12): 2761-75.
  • 45. Li Y, Jin Q, Yang D, Cui J. 2018. Molybdenum Sulfide Induce Growth Enhancement Effect of Rice (Oryza sativa L.) through Regulating the Synthesis of Chlorophyll and the Expression of Aquaporin Gene. Journal of Agricultural and Food Chemistry, 66(16): 4013-21.
  • 46. Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment, 514: 131-9.
  • 47. Ma C, Liu F, Wei M, Zhao J, Zhang H. 2020. Synthesis of Novel Core-Shell Magnetic Fe3O4@C Nanoparticles with Carboxyl Function for Use as an Immobilisation Agent to Remediate Lead-Contaminated Soils. Polish Journal of Environmental Studies., 29: 2273-83.
  • 48. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. 2014. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 6(1): 35-44.
  • 49. Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Science of The Total Environment, 769: 145221.
  • 50. Mehta MR, Mahajan HP, Hivrale AU. 2021. Green Synthesis of Chitosan Capped-Copper Nano Biocomposites: Synthesis, Characterization, and Biological Activity against Plant Pathogens. BioNanoScience, 11: 417-27.
  • 51. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB. 2014. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5): e97881.
  • 52. Mukhopadhyay SS. 2014. Nanotechnology in agriculture: prospects and constraints. Nanotechnology Science and Application, 7: 63-71.
  • 53. Nair B, Pradeep T. 2002. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Crystal Growth & Desing, 2(4): 293-8.
  • 54. Narayanan KB, Park HH. 2014. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. European Journal of Plant Pathology, 140: 185-92.
  • 55. Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science, 311(5761): 622-7.
  • 56. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W. 2013. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano. 7(10): 8972-80.
  • 57. Palmqvist NGM, Seisenbaeva GA, Svedlindh P, Kessler VG. 2017. Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus. Nanoscale Reseach Letters, 12(1): 631.
  • 58. Parzinger E, Miller B, Blaschke B, Garrido JA, Ager JW, Holleitner A, Wurstbauer U. 2015. Photocatalytic Stability of Single- and Few-Layer MoS₂. ACS Nano., 9(11): 11302-9.
  • 59. Pingali PL. 2012. Green revolution: impacts, limits, and the path ahead. Proceeding of the Natlional Academy Science USA, 109(31): 12302-8.
  • 60. Prasad VBR, Govindaraj M, Djanaguiraman M, Djalovic I, Shailani A, Rawat N, Singla-Pareek SL, Pareek A, Prasad PVV. 2021. Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 22(18): 9826.
  • 61. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT. 2015. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Industrial Crops and Products, 70: 356-73.
  • 62. Raliya R, Tarafdar JC. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research, 2(1): 48-57.
  • 63. Reganold JP, Wachter JM. 2016. Organic agriculture in the twenty-first century. Nat Plants, 2: 15221.
  • 64. Rengasamy P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5): 1017-23.
  • 65. Rossi L, Zhang W, Lombardini L, Ma X. 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut., 219: 28-36.
  • 66. Rossi L, Zhang W, Ma X. 2017. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229 :132-38.
  • 67. Savithramma N, Linga Rao M, Suhrulatha D. 2011. Screening of medicinal plants for secondary metabolites. International Journal of Research in Pharmaceutical Sciences, 2(4): 643-7.
  • 68. Schreinemachers P, Tipraqsa P. 2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy, 37(6): 616-26.
  • 69. Schroder J, Zhang H, Girma K, Raun W, Penn C, Payton M. 2011. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Science Society of America Journal, 75 :957–64.
  • 70. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review. Nanotoxicology, 10(3): 257-78.
  • 71. Shahverdi A, Minaeian S, Shahverdi H, Jamalifar H, Nohi A. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 42(5): 919-23.
  • 72. Shekhawat G, Arya V. 2009. Biological Synthesis of Ag Nanoparticles through In Vitro Cultures of Brassica Juncea C. zern. Advanced Materials Research, 67: 295-9.
  • 73. Shubair T, Eljamal O, Khalil A, Matsunaga N. 2018. Multilayer system of nanoscale zero valent iron and Nano-Fe/Cu particles for nitrate removal in porous media. Separation and Purification Technology, 193: 242-54.
  • 74. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA. 2014. Nanosilicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology Chemistry, 33(11): 2429-37.
  • 75. Siddiqui MH, Al-Whaibi MH. 2014. Role of nanoSiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Journal of Biological Sciences, 21(1): 13-7.
  • 76. Sillen W, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J. 2015. Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biology and Biochemistry, 91: 14-22.
  • 77. Singh P, Kim YJ, Zhang D, Yang DC. 2016. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnology, 34(7): 588-99.
  • 78. Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM. 2016. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere, 152: 81-91.
  • 79. Tang Z, Wang HQ, Chen J, Chang JD, Zhao FJ. 2023. Molecular mechanisms underlying the toxicity and detoxification of trace metals and metalloids in plants. Journal of Integratie Plant Biology, 65(2): 570-93.
  • 80. Tripathi P, Tripathi R, Singh R, Dwivedi S, Goutam D, Shri M, et al. 2013. Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecological Engineering, 52: 96-103.
  • 81. Van NL, Ma C, Shang J, Rui Y, Liu S, Xing B. 2016. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 144: 661-70.
  • 82. Wang J, Zhang T, Li M, Yang Y, Lu P, Ning P, Wang Q. 018. Arsenic removal from water/wastewater using layered double hydroxide derived adsorbents, a critical review. RSC Advances, 8(40): 22694-709.
  • 83. Wang L, Ning C, Pan T, Cai K. 2022. Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review. International Journal of Molecular Sciences, 23(4): 1947.
  • 84. Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5): 244-52.
  • 85. Wienhold BJ, Andrews SS, Karlen DL. 2004. Soil quality: a review of the science and experiences in the USA. Environmental Geochemistry and Health, 26(2-3): 89-95.
  • 86. Wu N, Yu Y, Li T, Ji X, Jiang L, Zong J, Huang H. 2016. Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level. PLoS One, 11(12): e0167245.
  • 87. Xiang Y, Zhang G, Chi Y, Cai D, Wu Z. 2017. Fabrication of a controllable nanopesticide system with magnetic collectability. Chemical Engineering Journal, 328: 320-30.
  • 88. Xu C, Cao L, Zhao P, Zhou Z, Cao C, Li F, et al. 2018. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chemical Engineering Journal, 334: 2588-98.
  • 89. Yang K, Zhu L, Xing B. 2006. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 40(6): 1855-61.
  • 90. Yang Y, Jia M. 2024. 3D spatial interpolation of soil heavy metals by combining kriging with depth function trend model. Journal of Hazardous Materials, 461: 132571.
  • 91. Yang Z, Liang L, Yang W, Shi W, Tong Y, Chai L, Gao S, Liao Q. 2018. Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environmental Science and Pollution Research, 25(12): 11970-80.
  • 92. Yao J, Cheng Y, Zhou M, Zhao S, Lin S, Wang X, Wu J, Li S, Wei H. 2018. ROS scavenging Mn3 O4 nanozymes for in vivo anti-inflammation. Chemical Science, 9(11): 2927-33.
  • 93. Yoon KY, Hoon Byeon J, Park JH, Hwang J. 2007. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of The Total Environment, 373(2-3): 572-5.
  • 94. Younas Z, Mashwani ZUR, Ahmad I, Khan M, Zaman S, Sawati L, Sohail. 2023. Mechanistic Approaches to the Application of Nano-Zinc in the Poultry and Biomedical Industries: A Comprehensive Review of Future Perspectives and Challenges. Molecules, 28(3): 1064.
  • 95. Zhang J, Gong JL, Zeng GM, Yang HC, Zhang P. 2017. Carbon nanotube amendment for treating dichlorodiphenyltrichloroethane and hexachlorocyclohexane remaining in Dong-ting Lake sediment - An implication for in-situ remediation. Science of The Total Environment, 579(1): 283-291.
  • 96. Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y, Zhao Y. 2011. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 3(8): 816-22.
  • 97. Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, LópezMoreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL. 2017. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiology and Biochemistry, 110: 236-64.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c730ba5-2f87-48da-b5a9-1a5634520ca7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.