PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current-zero-crossing Shift for Compensation of Dead-time Distortion in Pulse-width-modulated Voltage Source Inverter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate current polarity detection is a major issue for successful compensation of dead-time distortion in pulse-width-modulated (PWM) voltage source inverter. The present study is concerned with the concept of shift in current-zero-crossing due to dead-time distortion compensation that results in error in current polarity detection and thus causes a problem with regard to the successful continuation of compensation. The phenomenon is analysed in detail, along with its dependence on different factors. The proposed concept is validated in digital simulation and also through experimental verification. The study also recommends the possible correction to be incorporated in view of such zero-crossing shift for achieving proper compensation, especially in case of current-sensor-less compensation techniques.
Wydawca
Rocznik
Strony
84--98
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Electrical Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
  • Electrical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
  • Electrical Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
  • Electrical Engineering Department, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
Bibliografia
  • Bedetti, N., Calligaro, S. and Petrella, R. (2015). Self-Commissioning of Inverter Dead-Time Compensation by Multiple Linear Regression Based on a Physical Model. IEEE Transactions on Industry Applications, 51(5), pp. 3954-3964.
  • Ben-Brahim, L. (1998). The analysis and compensation of dead-time effects in three phase PWM inverters. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society IECON ‘98, Aachen, Germany, 31 August, 1998. Vol. 32, pp. 792-797.
  • Beniak, R. and Rogowski, K. (2016). A Method of Reducing Switching Losses in Three-Level NPC Inverter. Power Electronics and Drives, 1(36), No. 2, pp. 55-63.
  • Berg, M. and Roinila, T. (2020). Nonlinear Effect of Dead Time in Small-Signal Modeling of PowerElectronic System Under Low-Load Conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(4), pp. 3204-3213.
  • Bhowmick, S., Mukherjee, D., Maiti, S. and Chakraborty, C. (2021). Grid-Tied Neutral Point Clamped based Centralised Photovoltaic Inverter with Improved DC Link Voltage Balancing and Harmonic Minimisation Control. Power Electronics and Drives, 6(41), pp. 185-203.
  • Chierchie, F., Stefanazzi, L., Paolini, E. E. and Oliva, A. R. (2014). Frequency Analysis of PWM Inverters with Dead-Time for Arbitrary Modulating Signals. IEEE Transactions on Power Electronics, 29(6), pp. 2850-2860.
  • Choi, C., Cho, K. and Seok, J. (2007). Inverter Nonlinearity Compensation in the Presence of Current Measurement Errors and Switching Device Parameter Uncertainties. IEEE Transactions on Power Electronics, 22(2), pp. 576-583.
  • Herran, M. A., Fischer, J. R., Gonzalez, S. A., Marcos, G., Judewicz, M. G., Daniel, O. and Carrica, D. O. (2013). Adaptive Dead-Time Compensation for Grid-Connected PWM Inverters of Single-Stage PV Systems. IEEE Transactions on Power Electronics, 28(6), pp. 2816-2825.
  • Hwang, S. and Kim, J. (2010). Dead Time Compensation Method for Voltage-Fed PWM Inverter. IEEE Transactions on Energy Conversion, 25(1), pp. 1-10.
  • Jena, K., Gupta, K. K., Bhatnagar, P., Jain, S. K., Stala, R., Waradzyn, Z., Piróg, S., Penczek, A., Mondzik, A. and Skała, A. (2022). Single-Source Three-Phase Switched-Capacitor-based MLI. Power Electronics and Drives, 7(42), pp. 197-209.
  • Kim, H., Kim, K. and Youn, M. (2003). On-Line Dead-Time Compensation Method Based on Time Delay Control. IEEE Transactions on Control Systems Technology, 11(2), pp. 279-285.
  • Kim, S. and Park, S. (2007). Compensation of Dead-Time Effects Based on Adaptive Harmonic Filtering in the Vector-Controlled AC Motor Drives. IEEE Transactions on Industrial Electronics, 54(3), pp. 1768-1777.
  • Kumar, M. (2018). Time-Domain Characterization of Digitized PWM Inverter with Dead-Time Effect. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(10), pp. 3592-3601.
  • Leggate, D. and Kerkman, R. J. (1997). Pulse-Based Dead-Time Compensator for PWM Voltage Inverters. IEEE Transactions on Industrial Electronics, 44(2), pp. 191-197.
  • Lin, J. (2002). A New Approach of Dead-Time Compensation for PWM Voltage Inverters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(4), pp. 476-483.
  • Liu, G., Wang, D., Jin, Y., Wang, M. and Peng Zhang, P. (2017). Current-Detection-Independent Dead-Time Compensation Method Based on Terminal Voltage A/D Conversion for PWM VSI. IEEE Transactions on Industrial Electronics, 64(10), pp. 7689-7699.
  • Munoz, A. R. and Lipo, T. A. (1999). On-Line DeadTime Compensation Technique for Open-Loop PWM-VSI Drives. IEEE Transactions on Power Electronics, 14(4), pp. 683-689.
  • Rąbkowski, J. and Kopacz, R. (2018). Extended T-type Inverter. Power Electronics and Drives, 3(38), No. 1, pp. 55-64.
  • Roomi, M. M. (2019). An Overview of Carrier-based Modulation Methods for Z-Source Inverter. Power Electronics and Drives, 4(39), pp. 15-31.
  • Seyyedzadeh, S. M., Mohamadian, S., Siami, M. and Shoulaie, A. (2019). Modeling of the Nonlinear Characteristics of Voltage Source Inverters for Motor Self-Commissioning. IEEE Transactions on Power Electronics, 34(12), pp. 12154-12164.
  • Seyyedzadeh, S. M. and Shoulaie, A. (2019). Accurate Modeling of the Nonlinear Characteristic of a Voltage Source Inverter for Better Performance in Near Zero Currents. IEEE Transactions on Industrial Electronics, 66(1), pp. 71-78.
  • Shen, Z. and Jiang, D. (2019). Dead-Time Effect Compensation Method Based on Current Ripple Prediction for Voltage-Source Inverters. IEEE Transactions on Power Electronics, 34(1), pp. 971-984.
  • Tang, Z. and Akin, B. (2017). Suppression of Dead-Time Distortion through Revised Repetitive Controller in PMSM Drives. IEEE Transactions on Energy Conversion, 32(3), pp. 918-930
  • Wu, C. M., Lau, W. H. and Chung, H. S. (1999). Analytical Technique for Calculating the Output Harmonics of an H-Bridge Inverter with Dead Time. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(5), pp. 617-627.
  • Yu, Q., Lemmen, E., Wijnands, C. G. E. and Vermulst, B. (2021). Output Spectrum Modeling of an H-Bridge Inverter with Dead-Time Based on Switching Mode Analysis. IEEE Transactions on Power Electronics, 36(10), pp. 11344-11356.
  • Zhao, H., Wu, Q. M. G. and Kawamura, A. (2004). An Accurate Approach of Nonlinearity Compensation for VSI Inverter Output Voltage. IEEE Transactions on Power Electronics, 19(4), pp. 279-285.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c670f42-0ff6-4c13-8035-c348584231c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.