PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary experimental/numerical study of the vibration annoyance control of a windshield wiper mechanical system through a Synchronized Switch Shunt Resonator (SSSR) technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work focuses on the study and analysis of vibrations generated by the electrical motor of a wiper system on its support bracket referring to an hatchback vehicle passenger car. In the electric motor of the wiper system there can be present an imbalance transmitting vibrations to the main body via the support bracket. In this paper, after a short resume of available synchronized switch shunt damping methods, a preliminary experimental evaluation of their potential performance on noise control of the wiper system is reported. After preliminary experimental measurements of dynamic vibration by the use of vibrometer laser both on the real hatchback car then in laboratory environment, a numerical model has been created to evaluate deformations of the support bracket for comparison with the experimental data. This work realizes the preliminary numerical/experimental characterization activity to set up a new application of a control system based on a semi-active technique, called Synchronized Switch Shunt Resonator (SSSR).
Rocznik
Strony
283--296
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • University of Naples “Federico II”, Department of Industrial Engineering – Aerospace Section, Naples, Italy
autor
  • University of Naples “Federico II”, Department of Industrial Engineering – Aerospace Section, Naples, Italy
autor
  • C.I.R.A. Italian Aerospace Research Centre, Capua (CE), Italy
autor
  • C.R.F. Centro Ricerche Fiat, Orbassano (TO), Italia
Bibliografia
  • 1. Ameduri S., Ciminello M., 2010, Fourier expansion solution for a Switched Shunt Control applied to a duct, Journal of Theoretical and Applied Mechanics, 48, 2
  • 2. Badel A., Sebald G., Guyomar D., Lallart M., Lefeuvre E., Richard C., 2006, Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping, Journal of Acoustics Society American, 119, 5, 2815-2825
  • 3. Ciminello M., Calabro A., Ameduri S., Concilio S., 2008, Synchronized Switched Shunt Control technique applied on a cantilevered beam: experimental investigations, Journal of Intelligent Material Systems and Structures, 19, 9, 1089-1100
  • 4. Ciminello M., Lecce L., Ameduri S., Calabro A., Concilio S., 2010, Multi-tone Switching Shunt Control by a PZT network embedded into a fiberglass panel: design, manufacture, and test, Journal of Intelligent Material Systems and Structures, 21, 437-451
  • 5. Clark W.W., 1999, Semi-active vibration control with piezoelectric materials as variable stiff- ness actuators, AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Part 4
  • 6. Guyomar D., Richard C., Petit L., 2001, Non-linear system for vibration damping, 142th Meeting of Acoustical Society of America, Fort Lauderdale, USA
  • 7. Hollkamp J.J., 1994, Multimodal passive vibration suppression with piezoelectric materials and resonant shunts, Journal of Intelligent Material Systems and Structures, 5, 49-56
  • 8. Magliacano D., Viscardi M., Ciminello M., Dimino I., Concilio A., 2016a, Feasibility study for a tonal vibration control system of a mounting bracket for automotive gearboxes, International Journal of Mechanics, 10, 403-410
  • 9. Magliacano D., Viscardi M., Dimino I., Concilio A., 2016b, Active vibration control by piezoceramic actuators of a car floor panel, 23rd International Congress on Sound and Vibration, ICSV
  • 10. Makihara K., Onoda J., Minesugi K., 2005, Low-energy-consumption hybrid vibration suppression based on an energy-recycling approach, AIAA Journal, 43, 8, 1706-1715
  • 11. Makihara K., Onoda J., Minesugi K., 2007a, A self-sensing method for switching vibration suppression with a piezoelectric actuator, Smart Materials and Structures, 162, 2, 455-461
  • 12. Makihara K., Onoda J., Minesugi K., 2007b, Comprehensive assessment of semi-active vibration suppression including energy analysis, Journal of Vibration and Acoustics, 129, 84-93
  • 13. Makihara K., Onoda J., Minesugi K., 2007c, Using tuned electrical resonance to enhance bang-bang vibration control, AIAA Journal, 45, 2, 497-504
  • 14. Onoda J., Makihara K., Minesugi K., 2003, Energy-recycling semi-active method for vibration suppression with piezoelectric transducers, AIAA Journal, 41, 4, 711-719
  • 15. Petit L., Lefeuvre E., Richard C., Guyomar D., 2004, A broadband semipassive piezoelectric technique for structural damping, SPIE International Symposium on Smart Structures and Materials: Damping and Isolation, San Diego, CA, USA
  • 16. Qiu J., Ji H., Zu K., 2009, Semi-active vibration control using piezoelectric actuators in smart structures, Frontiers of Mechanical Engineering in China, 4, 3, 242-251
  • 17. Richard C., Guyomar D., Audigier D., Ching G., 1998, Semi-passive damping using continuous switching of a piezoelectric device, SPIE Smart Structures and Materials Conference: Passive Damping and Isolation, San Diego
  • 18. Siano D., Viscardi M., Panza M.A., 2016, Automotive Materials: An Experimental Investigation of an Engine Bay Acoustic Performances, Energy Procedia, 101, 598-605
  • 19. Viscardi M., Di Leo R., 2016, Implementation of an electronic circuit for SSSA control approach of a plate type element and experimental match with a feed-forward approach, Archive of Mechanical Engineering, LXIII, 4, 665-677
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c613ab3-77c7-4174-9236-c989d55fd961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.