PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometry extraction from GCODE files destined for 3D printers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of conversion of GCODE files designed for additive manufacturing in 3D printers to a format which may be conveniently visualized. In the investigations three different 3D models were created: a) shell model (a casing); b) solid model (a gear); c) model with curvilinear elements (a screw). All these models were converted to GCODE files. Next the reverse engineering was applied and GCODE files were converted to points sets. These points represent particular locations of the print head. In the developed algorithm the linear interpolation was added to obtain intermediate points between locations of the print head for longer sections. The final part shows an attempt of applying Poisson Surface Reconstruction in order to obtain the original geometry. The main motivation to develop a new software resulted from the observation that sometimes the original solid model is no longer available, while there is a need to change some geometry details or settings before production stage.
Słowa kluczowe
Rocznik
Tom
Strony
115--130
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering and Fundamentals of Machine Design, University of Warmia and Mazury, Olsztyn
  • Department of Mechanical Engineering and Fundamentals of Machine Design University of Warmia and Mazury, Olsztyn
Bibliografia
  • Baronio G., Harran S., Signoroni A. 2016. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process. Applied Bionics and Biomechanics, 2016: 1-7, article ID 8347478.
  • Baumann F., Bugdayci H., Grunert J., Keller F., Roller D. 2016. Influence of slicing tools on quality of 3D printed parts. Computer-Aided Design & Applications, 13(1): 14-31.
  • Baumann F.W., Schuermann M., Odefey U., Pfeil M. 2017. From GCODE to STL: Reconstruct Models from 3D Printing as a Service. IOP Conf. Series: Materials Science and Engineering, 280: 012033.
  • Dúbravčík M., Kender Š. 2012. Application of reverse engineering techniques in mechanics system services. Procedia Engineering, 48: 96-104.
  • Eslami A.M. 2017. Integrating Reverse Engineering and 3D Printing for the Manufacturing Process. American Society for Engineering Education, Paper ID #18869.
  • GNU Fortran Home Page. 2018. https://gcc.gnu.org/fortran/ (access: 18.10.2018).
  • Godoi F.C., Prakash S., Bhandari B.R. 2016. 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering, 179: 44-54.
  • Guerrero-de-Miera A., Espinosa M.M., Domínguez M. 2015. Bricking: A new slicing method to reduce warping. Procedia Engineering, 132: 126-131.
  • Habrat W. 2007. Obsługa i programowanie obrabiarek CNC. Poradnik operatora. Wydawnictwo KaBe, Krosno.
  • Hangge P., Pershad Y., Witting A.A., Albadawi H., Oklu R. 2018. Three-dimensional (3D) printing and its applications for aortic diseases. Cardiovascular Diagnosis and Therapy, 8: 19-25.
  • Hu J. 2017. Study on STL-Based Slicing Process for 3d Printing. Proceedings of the 28th Annual International, Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference. Austin TX, August 7-9, 11 p.
  • ISO 6983-1:2009: Automation systems and integration - Numerical control of machines - Program format and definitions of address words - Part 1: Data format for positioning, line motion and contouring control systems. https://www.iso.org/standard/34608.html (access: 18.10.2018).
  • jView. 2020. http://www.jtronics.de/software/jview-simple-g-code-viewer/ (access: 1.04.2020).
  • Kazhdan M., Bolitho M., Hoppe H. 2006. Poisson surface reconstruction. Proceedings of the 4th Eurographics Symposium on Geometry Processing, Sardinia, Italy, p. 1-10.
  • Kramer T.R., Proctor F.M., Messina E. 2000. The NIST RS274NGC Interpreter – Version 3. NISTIR 6556, August 17, p. 121.
  • Lorensen W.E., Cline H.E. 1987. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4): 163-169.
  • Mathur R. 2016. 3D Printing in Architecture. International Journal of Innovative Science, Engineering & Technology, 3(7): 583-591.
  • MatterControl Home Page. 2019. https://www.matterhackers.com/ (access: 10.04.2019).
  • MeshLab Home Page. 2019. http://www.meshlab.net/ (access: 10.04.2019).
  • NC Viewer. 2020. https://ncviewer.com/ (access: 11.04.2020).
  • Norlander R. 2017. Make it Complete: Surface Reconstruction Aided by Geometric Primitives. http://liu.diva-portal.org/smash/get/diva2:1153573/FULLTEXT01.pdf.
  • ParaView Home Page. 2019. https://www.paraview.org/ (access: 10.04.2019).
  • Parra-Cabrera C., Achille C., Kuhn S., Ameloot R. 2018. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chemical Society Reviews, 1.
  • Pitayachaval P., Sanklong N., Thongrak A. 2018. A Review of 3D Food Printing Technology. MATEC Web of Conferences, 213: 01012.
  • Shahi B.S. 2016. Advanced Manufacturing Techniques (3D Printing). International Journal of Mechanical And Production Engineering, 4(4): 16-23.
  • Shatornaya A.M., Chislova M.M., Drozdetskaya M.A., Ptuhina I.S. 2017. Efficiency of 3D printers in Civil Engineering. Construction of Unique Buildings and Structures, 9(60): 22-30.
  • Szebényi G., Czigány T., Magyar B., Karger-Kocsis J. 2017. 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility. eXPRESS Polymer Letters, 11(7): 525-530.
  • Tappa K, Jammalamadaka U., Ballard D.H., Bruno T, Israel M.R., Vemula H., Meacham J.M., Mills D.K., Woodard P.K., Weisman J.A. 2017. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoSONE, 12(8): e0182929.
  • Tay Y.W.D., Panda B., Paul S.C., Mohamed N.A.N., Tan M.J., Leong K.F. 2017. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261-176.
  • Topçu O., Taşcioğlu Y., Ünver H.Ö. 2011. A Method for Slicing CAD Models in Binary STL Format. 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey.
  • VTK – The Visualization Toolkit. https://www.vtk.org/ (access: 10.04.2019).
  • Wang W., Chao H., Tong J., Yang Z., Tong X., Li H., Liu X., Liuy L. 2014. Saliency-Preserving Slicing Optimization for Effective 3D Printing. COMPUTER GRAPHICS forum, 33(5): 1-12.
  • Xu Y., Wu X., Guo X., Kong B., Zhang M., Qian X., Mi S., Sun W. 2016. The Boom in 3D-Printed Sensor Technology. Sensors, 17: 37.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c53e380-eeca-4d02-a772-c9b572a2c466
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.