PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unsteady MHD plane Couette-Poiseuille flow of fourthgrade fluid with thermal radiation, chemical reaction and suction effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the unsteady MHD flow of a fourth-grade fluid in a horizontal parallel plates channel. The upper plate is oscillating and moving while the bottom plate is stationary. Solutions for momentum, energy and concentration equations are obtained by the He-Laplace scheme. This method was also used by Idowu and Sani [12] and there is agreement with our results. The effect of various flow parameters controlling the physical situation is discussed with the aid of graphs. Significant results from this study show that velocity and temperature fields increase with the increase in the thermal radiation parameter, while velocity and concentric fields decrease with an increase in the chemical reaction parameter. Furthermore, velocity, temperature and concentric fields decrease with an increase in the suction parameter. It is also interesting to note that when 4S0=, our results will be in complete agreement with Idowu and Sani [12] results. The results of this work are applicable to industrial processes such as polymer extrusion of dye, draining of plastic films etc.
Rocznik
Strony
77--98
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mathematical Sciences, Nigerian Defence Academy, Kaduna, NIGERIA
  • Department of Mathematical Sciences, Nigerian Defence Academy, Kaduna, NIGERIA
  • Department of Mechanical Engineering, Nigerian Defence Academy, Kaduna, NIGERIA
Bibliografia
  • [1] Rehan A.S., Islam S. and Siddiqui A.M. (2010): Couette and Poiseuille flows for fourth-grade fluids using optimal homotopy asymptotic method.– World Applied Science Journal, vol.9, No.1, pp.1228-1236.
  • [2] Islam S., Bano Z., Siddique I. and Siddiqui A.M. (2011): The optimal solutions for the flow of a fourth-grade fluid with partial slip.– Computer and Mathematics with Application, vol.6, pp.1507-1516. Doi: 10.1016/j.camwa.2011.01.04.
  • [3] Shehzad N., Zeeshan A. and Ellahi R. (2018): Electroosmotic flow of MHD power law Al2O3-PVC nanofluid in a horizontal channel: Couette-Poiseuille flow model.– Commun. Theor. Phys., vol.6, No.6, pp.655-666. Doi: http://www.iopscience.iop.org/ctp.
  • [4] Fenuga O.J., Aroloye S.J. and Salawu S.O. (2020): Mathematical model and solution for an unsteady MHD fourth grade fluid flow over a vertical plate in a porous medium with magnetic field and suction/injection effects.– Journal of Scientific Research, vol.12, No.4, pp.485-498.
  • [5] Khan Z., Khan I., Ullah M. and Tlili I. (2018): Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with suction.– Results in Physics, vol.9, pp.1086-1095.
  • [6] Santhosa B., Younus S., Kamala G. and Ramana Murthy MV. (2017): Radiation and chemical effects on MHD free convective heat and mass transfer flow of a viscoelastic fluid past a porous plate with heat generation/absorption.– Int J Chem Sci., vol.15, No.3, p.170.
  • [7] Yurusoy M. (2020): Investigation of velocity profile in time dependent boundary layer flow of a modified power-law fluid of fourth grade.– Int. J. Applied Mechanics and Engineering, vol. 25, No.2, pp.176-191.
  • [8] Taza G., Fazle G., Islam S., Shah R.A., Khan I., Nasir S. and Sharidan S. (2016): Unsteady thin film flow of a fourthgrade fluid over a vertical moving and oscillating belt.– Propulsion and Power Research, vol.5, No.3, pp.223-235. https://doi.org/10.1016/j.jppr.2016.07.002.
  • [9] Hayat T., Ellahi R. and Mahomed F.M. (2007): Exact solutions for Couette and Poiseuille flows for fourth grade fluids.– Acta Mechanica, vol.188, pp.69-78.
  • [10] Arifuzzaman S.M, Shakhaoth Khan Md., Al-Mamum A., Reza-E-Rabbi S.K, Biswas P. and Karim I. (2018): Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction.– Journal of King Saud University, vol.31, No.4, pp.1388-1398. https://doi.org/10.1016/j.jksus.2018.12.009.
  • [11] Priyadarsan K.P. and Panda S. (2020): Heat transfer in unsteady magnetohydrodynamic flow of fourth-grade fluid through a porous medium between two infinite parallel plates with time dependent suction.– Special Topics & Reviews in Porous Media – An International Journal, vol.11, No.3, pp.239-258.
  • [12] Idowu A.S. and Sani U. (2019): Thermal radiation and chemical reaction effects on unsteady magnetohydrodynamic third-grade fluid flow between stationary and oscillating plates.– Int. J. of Applied Mechanics and Engineering, vol.24, pp.269-293. doi: 10.2478/ijame-2019-0018.
  • [13] Coleman B.D. and Noll W. (1960): An approximation theorem for functionals with applications in continuum mechanics.– Arch. Ration. Mech. Analy., vol.6, pp.355-370.
  • [14] Hayat T., Wang Y. and Hutter K. (2002): Flow of a fourth-grade fluid.– Math. Models Methods Appl. Sci., vol.12, pp.797-811. https://doi.org/10.1142/s0218202502001908.
  • [15] Hayat T., Khan M., Ayub M. and Siddiqui A.M. (2005): The unsteady Couette flow of a second grade fluid in a layer of porous medium.– Archives of Mechanics, vol.57, pp.405-416.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c51644b-2837-4f56-a346-3b69ec66bd6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.