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This study investigates the unsteady MHD flow of a fourth-grade fluid in a horizontal parallel plates channel.
The upper plate is oscillating and moving while the bottom plate is stationary. Solutions for momentum, energy
and concentration equations are obtained by the He-Laplace scheme. This method was also used by Idowu and Sani
[12] and there is agreement with our results. The effect of various flow parameters controlling the physical situation
is discussed with the aid of graphs. Significant results from this study show that velocity and temperature fields
increase with the increase in the thermal radiation parameter, while velocity and concentric fields decrease with an
increase in the chemical reaction parameter. Furthermore, velocity, temperature and concentric fields decrease with
an increase in the suction parameter. It is also interesting to note that when S, =0, our results will be in complete

agreement with Idowu and Sani [12] results. The results of this work are applicable to industrial processes such as
polymer extrusion of dye, draining of plastic films etc.
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1. Introduction

A fourth-grade fluid is an important subclass of differential type that is capable of describing shear
thinning and shear thickening effects (examples are ketchup, blood, paint, cream, nail polish, etc.). This sort
of model is used to explain the flow behaviour of non-Newtonian fluids which are considered vital and
applicable in many industrial production processes such in the drilling of oil and gas wells, polymer extrusion
from dye, glass fibre, paper production and draining of plastics films, etc.

Many empirical and semi-empirical non-Newtonian models or constitutive equations have been
proposed. Rehan et al. [1] considered the steady flow of a fourth grade fluid between two parallel plates. They
analyzed four types of flows: Couette flow, plug flow, Poiseuille flow and generalized Couette flow. The
nonlinear differential equation describing the velocity field was solved by the optimal homotopy asymptotic
method (OHAM). They observed that the OHAM was more efficient and flexible than the perturbation and
homotopy analyses method. Islam ef al. [2] considered the steady flow of a non-Newtonian fluid with slippage
between the plate and the fluid. The constitutive equations of the fluids were modelled for a fourth-grade non-
Newtonian fluid with partial slip. They employed homotopy perturbation and optimal homotopy asymptotic
methods to solve the non-linear differential equation. Shehzad et al. [3] studied the electro-osmotic Couette-
Poiseuille flow of a power law AI203- PVC nanofluid through a channel, in which the upper wall is moving
with constant velocity. The influences of the magnetic field, mixed convection, Joule heating, and viscous
dissipation were also examined. The flow was generated because of a constant pressure gradient in the axial
direction. The resulting flow problem was described by coupled nonlinear ordinary differential equations,
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which were at first modeled and then transform into a dimensionless form through appropriate transformations.
An analytical solution of the governing equation was given.

Fenuga et al. [4] investigated the mathematical model and solution for an unsteady MHD fourth grade
fluid flow over a vertical plate in a porous medium with the effects of the magnetic field and suction/injection
parameters using the Homotopy Perturbation Method. They displayed graphically and discussed the impact of
dimensionless second, third and fourth grade parameters with the effects of the magnetic field and
suction/injection parameters on the velocity field. They found out that on increase in the suction parameter
decreases the momentum boundary layer thickness while the injection parameter enhances velocity distribution
in the boundary layer. Magnetic field reduces velocity throughout the boundary layer because the Lorentz force
which acts as a retarding force reduces the boundary layer thickness. Khan et al. [S] discussed the unsteady
flow of a non- Newtonian fluid with the properties of heat/sink in the presence of thermal radiation. Santhosha
et al. [6] studied the radiation and chemical combined effects on an MHD free convective heat and mass
transfer flow of a viscous, incompressible, conducting elastic fluid through a porous medium limited by a
porous plate within the presence of heat generation. The momentum, energy and mass diffusion equations were
coupled non-linear partial differential equations. They employed the two term perturbation method.

Yurusoy [7] investigated the time dependent boundary layer flow of a modified power-law fluid of
fourth grade on a stretched surface with an injection or suction boundary condition. The fluid model is a
mixture of fourth grade and power-law fluids in which the fluid may display shear thickening, shear thinning
or normal stress textures. He used the scaling and translation transformations which is a type of Lie Group
transformation. Time dependent boundary layer equations were reduced into two alternative ordinary
differential equations systems (ODEs) with boundary conditions. He found out that the boundary layer
thickness decreases as the power-law index value increases. And also, as the fourth-grade fluid parameter,
increases, the boundary layer thickness decreases while the velocity in the y direction increases.

Taza et al. [8] studied the unsteady thin film flow of a fourth grade fluid over a moving and oscillating
vertical belt. They employed the adomian decomposition method (ADM) and optimal homotopy asymptotic
method (OHAM) to find the solution of the non- linear differential equations that governed the flow. Hayat et
al. [9] presented the exact solution four four types of flows between two parallel plates, viz. Couette flow, plug
flow, Poiseuille flow and generalized Couette flow. The nonlinear second-order differential equation for the
velocity field was solved exactly in each case. The nonlinear differential equation describing the velocity field
was solved by the optimal homotopy asymptotic method (OHAM). They observed that the OHAM is more
efficient and flexible than the perturbation and homotopy analyses method. Arifuzzaman et al. [10] analysed
heat and mass transfer characteristics of naturally corrective hydro-magnetic flows of a fourth grade radiative
fluid flow throush a vertical porous plate. They considered a non-linear order chemical reaction and heat
generation with thermal diffusion. The complete fundamental equations were transformed into dimensionless
equations by implementing the finite difference scheme explicitly.

Priyadarsan and Panda [11] carried out a numerical investigation to study the unsteady flow of an
incompressible and electrically conducting fourth-grade fluid through a porous medium between two infinite
parallel plates under a transverse magnetic field with time-dependent suction. The lower plate is at rest and the
upper plate is moving and oscillating in its own plane at about a constant mean velocity with time-dependent
suction. The basic equations governing the flow and heat transfer are reduced to a set of non-linear partial
differential equations. The governing equations are simplified using the perturbation method with respect to
time and the resulting sixth-order non-linear differential equations are solved numerically using the Runge-
Kutta method in association with the multi-shooting technique. Their investigation revealed that the higher-
grade fluid parameters influence significantly the fluid temperature.

Idowu and Sani [12] carried out an analysis for an unsteady magnetohydrodynamic (MHD) flow of a
generalized third grade fluid between two parallel plates. The fluid flow was a result of the plate oscillation,
movingment and pressure gradient. Three flow problems were investigated, namely: Couette, Poiseuille and
Couette-Poiseuille flows and a number of nonlinear partial differential equations were obtained which were
solved using the He-Laplace method. Expressions for the velocity field, temperature and concentration fields
were given for each case and finally, effects of physical parameters on the fluid motion, temperature and
concentration were plotted and discussed. They found that an increase in the thermal radiation parameter
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increases the temperature of the fluid and hence reduces the viscosity of the fluid while the concentration of
the fluid reduces as the chemical reaction parameter increases.

In the above aforementioned investigations however, the effects of suction on the unsteady MHD flow
of fourth-grade fluid with thermal radiation and chemical reaction have not been studied. Suction is the act or
process of sucking. A force that causes a fluid or solid to be drawn into an interior space or to adhere to the
surface because of the difference between the external and internal pressure. This is considered to be due to
the porosity of the channel plates.

2. Formulation of the problem

We consider the unsteady flow of an electrically conducting incompressible fourth grade fluid between two
horizontal parallel plates channel as shown in Fig.1. below. The fluid is subjected to a uniform transverse magnetic
field. We assumed the bottom plate is fixed (stationary) and the top plate is moving with constant velocity.
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Fig.1. Physical configuration of the flow.

The state of this fluid is determined by the history of the deformation gradient without a preferred
reference configuration. Its constitute equation can be written as

T(x0)==PI+ £y (F (5)) 2.1

where PI is the undetermined part of the stress tensor, F' is the deformation gradient and f is the functional.

Coleman and Noll [13] studied a different sort of incompressible fluid grade #n as viscous fluid described in
Hayat et al. [14]. An incompressible fluid of differential type of grade » is a simple fluid obeying the
constitutive equation

T=-PI+)S,, (2.2)
j=1

obtained by asymptotic expansion of the functional in Eq.(2.1) through a retardation parameter o . For n=4
as in Hayat et al. ([14], [15]]) and Arifuzzaman et al. [10], the first four (4) tensors S are given by

Sy =p4;, (2.3)

S, =0 d, +0,47 (2.4)
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S;=B,A4;+B, (4,4, + A, 4;)+B; (”’A12)A1 > (2.5)

Sy =i Ag + Y5 (As Ay + Ay + 7345+, (4,47 + 47 45 ) + 06
+ys5 (trdy) Ay + 5 (trdy) A7 +[Y7WA3 +Y8”(A2A1)} 4

where, WL is the coefficient of shear viscosity, (xi(i=1,2), Bi(i:1,2,3) and v; (i=1(1)8) are material

constants. The 4, are the Rivlin-Ericksen tensors defined by the recursion relation

d
An :E -1t An—JL +LTAn—I , n>1» (27)
A =L+1" (2.8)

where L=VV, = is the material time derivative and V is the velocity.
t

We note that when v, =0, the fourth grade model reduces to the third grade model. When 3, =0, the
third grade model reduces to a second grade model. When o, =0, B, =0 and 7y; =0 then the model reduces
to classical Navier-Stoke fluid.

The thermally radiative and chemically reactive flow is heading towards the x -direction along infinite porous
plate with heat generation. Here, U, is the uniform velocity, 7., and C,, are the fluid temperature and concentration.

Under the above assumption, the equations that described the physical circumstances are

N _y, (2.9)

2
u apﬂ@ﬂ,v du +Blv2 o%u +6([32+B3)(8uJ @+

a dy ox al p plor p v p W) oy’
3055 2 2. 12 2 53
PRSIt S The ThaTha ) 28_u8_?8_u+[3_uJ AT TS
p dy“or pC, dy oy° dtdy \dy ) ay°or
oB}? v
—Tou+gBT (T—Tw)+gBC(C—Cw)—;u,
P
2
o T _ k0T, Qg gy L % 2.11)
ot d pC,o° pC, pC, dy
2
9C 2 _p2C Kk (c-c.). 2.12)

o Iy o’

From Eq.(2.11), g, is the radiative heat flux defined as
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aqr _ 2
—t=40°(T,-T.,). (2.12a)
dy
The initial and boundary conditions are
u=Upe ™, T=T)+(T,~T.)e", C=Cy+(C,~C.)e™ at t=0 for 0<y>h,
u(y,t)=U, T(yt)=T,, C(y,t)=C, at y=h for t20, (2.13)

u(y,t) oo, T(y,t)—>eo, C(y,t)—>e as y—oe for ¢>0.

where u is the fluid velocity, 7" is the temperature and C is the species concentration equation, g, is the

radiative heat flux, p is the density of the fluid, C,, is the heat capacity, B is the external magnetic field.

In order to transform Eqgs (2.10)-(2.13), we use the following dimensionless parameters

P S SRR, P 3 A1
Uy’ wu; v pU; Uj

G 2Bc(C,—C)v n _ KU, ¢_D . U, . X

[ 3 > a = 2 c T -7 -

U, h A% \% h

U, kU? T-T . C-C

h==L, p="2L s=T00 =T g=_—0 (=0

8_40@5 _ouU; _BUS (B, +B;)UJ s

= coa=—— Be=t B Y=
pc,v pv pv pv pv
:2(3YZ+Y3+Y4+Y5+3Y7+Y8)Ug Dakuoz x KV

b pV4 > V2 ’ r U(f

&20 = V=-v,,

dy

ou _ou_dp du o’u o%u uY 3%u 0’u
— St St —— B, 5P| | =5t Va5
o dy ox oy dy“ ot "y ot ) dy dy~ot

212 2 53
+Yp 28_u8_1;: 9u +(a—uj 82u —(Ha+iju+G,6+GcC,
dy gy dtdy \dy ) dy“or Da

(2.14)

(2.15)

(2.16)
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2
a0 Sae 1076

o % P 8 +(0)+9)0, 2.17)

2
o€ _ o€ ia——Krc. (2.18)
al ay S ay

And the initial and boundary conditions become

u(y,t)=e?, 08(yt)=e”, C(yt)=e” at t=0 for 0<y=>I

u(y,t)=1, 0(y.t)=1, C(y,t)=1 at  y=1 for (>0, (2.19)

u(y,t) oo, T(yt)—>ee, C(y,t)—>oee as y-—eo for 1>0.

3. Method of solution of the problem

In this section we employed the He-Laplace scheme to solve Eq.(2.16) to (2.18) subjected to the initial
and boundary conditions (2.19).
Since Eq.(2.16) is a coupled non-linear partial differential equation, we have to solve Eq.(2.17) and (2.18) first.
Now applying Laplace transform on Eq.(2.18), we have

2
L{BC} SL— oC :—L o°C -L{K,C}. 3.D
ot ay S, | oy’
Applying the initial condition and dividing through by s and rearranging, we obtain
e 9°C aC
LiC(y,t)f=—+—<—L + SL LiK,Cj;. 3.2
(crn}=% S{Sc 2clesuficlou }} 62

Taking the inverse Laplace transform of both sides of Eq.(3.2), gives

Clyt)= —y+L—1L{Sc {aa; } SL{‘?S} L{KVC}H. (3.3)

Applying the homotopy perturbation technique, Eq.(3.3) yields

,;)PHC () =e yH{L_I{s{SC L{?; } L{K, C}}H (3.4)

Comparing the coefficients of the like powers of 'P', the following approximations were obtained

P’:Cy(y,t)=e, (3.5)
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11 |o°C aC,
P.C(y)=L| ==L 04+ 8=\ L{K.C)}}|=
(520) HS (7C a2l s )
-y -y -y -y
L R B A e e e e a1
S. s s ) S.
2
PGy (y.t)=L" 1L 190G g 19 ~L{K,C,}t |=
s | Se ay2 dy
-y -y +
=L ! iL e——Se_y—K,e_y ty—SL Se_y—e—+Kre_y t =
s|S, S. S,
3.7
-y -y -y -y
o e PR U L 1. ¥
S, SCZ S, S,

(3.6)

PP Cs(yt)=L" E{S—ICL{B;CZZ } +5L {aa%} —L{KrCz}H =

-y ~y -y 2
=71 [l{iL{Le__ 28e ~ _2K.e ++2K,Se™” + 8% +Kr2e_y]%}+

s? S, S.

-y VK eV 2
+SL{[6—2— 25¢ 7 _2KC T Lok Se 4§57 +Kfe_y}[—}+
S 21

. ¢ c (3.8)
-y -y -y 2
~L1K,| S5~ 257 _2Ke L oKk se v 8% ke UL
s2 S, S, 21
e 387 2K 6K.Se¥ 38°%¢Y 3Kle? K.
=|—- - + + + - +
s; 82 S: S, S, S, S,
3
—K,8%¢™Y —3K’Se™ — S —Kle™ )%
Therefore, in view of equations (3.5), (3.6), (3.7) and (3.8), the solution to equation (2.18) is
C(3.1)=Cy(3:2)+Cy(3:1)+ Cy (3,1) + C3(p.1) - (3.9)
-y -y -y oKV
C(y,t)=e” + £ _se -K.e” |t+ e _25e” iR +2K,Se” +
S. S? S. S.
(3.10)

+S%eY +Kle TV | —+
' ) s 82 s? S. Se

2 [e? 38 2K.e¥ 6K.Se? 35%e
T - + + +
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. 3KZe™ _ K.’
S

c c

3
_K.S% —3K2Se — 83V Kl J% oo (cont.3.10)

Next, we consider Eq.(2.17), which is rearranged to give

2
20 Sae 108

a5 Pay +(1,)0  where [;=0)+39. (3.10a)

Now applying the Laplace transform to Eq.(2.16)

2
L{ae} L S@ —L 07 +L{1,6}. (3.11)
ot ] P |’
Applying the initial condition and dividing by s and rearranging we obtain
e 9’0 90
LiO(y,t)j=—+— L +SL +L31,0t; . 3.12
{8(rn0}== S{Pr {By} {ay} {1}} (3.12)

Taking the inverse Laplace transform of both sides of Eq.(31) gives

Ly 2’0 20
0(y,t)=e”+L L{EL{EV} SL{ay} L{I,G}H. (3.13)

Applying the homotopy perturbation technique to Eq.(3.13), yields

> L, 1 0%
Z;)P 0,(y,)=e +P{L {s{PrL{ay} L{SG}}H (3.14)

Comparing the coefficients of the like powers of 'P'in Eq.(3.14), the following approximations are obtained

0’0 00
Po,(y,t)=L" L 0Ly 5710y 1110
1()’ ) [s{i’, {ayz} {By} {1 O}H
gl 1[e”? e’ e’ e’ _ _
L S s e )
111 |9% 00
P20, (y.t)=L"| ==L LUy ord =Ly 11191l |=
200 HP {ayz} {ay} {1 }H
—y -y
_! Hli L{e__se—y +11e_yjt}—SL{(Se_y _e__z,e—y}}+ (3.17)
s P P, b
-y -y -y 2
+L41, e——Se_y+lle_y trp= e—2+21L—Sze_y+lfe_y t—,
b, P; b, 2!

(3.16)
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7

-y -y 2 -y -y
| Ll e e ey ey |E gl e e
s | P P> P 2! P> P

r r

P :0;(y,t)=L" [é{%L{a;%}+SL{%}+L{1192}H =

e 3LeY S%eY 3lier Se¥ 20,8
= —+—+1—- + - - +
I A R

3
—ZIZSe_y—l]SZe_y+lfe_y+S3e_y)%.

Therefore, in view of Eqs (3.15)-(3.18), the solution to (2.17) is,

0(1,1) =0y (1.2)+6;(.1)+0,(.2)+03(y.1),

2

-y -y -y
0(y,t)=e” + e——Se_y+l]e_y t+ e—+21L—S2e_y+llze_y L.
P P’ P 2!

r r r

e’ 3le? S 3ljer Se?  20,Se”

oyt~ + ——- +

L b L E .
3

- - _ v\ !

—I7Se™ —1,8%¢Y + [} + S%e y);jL.._

Finally, we now solve Eq.(2.16), which is rearranged to give

ou _ou_ dp du o’u 0%u u Y 3%u
——S—=—— At Sto——+B, 5B | | =5+
ot dy ox 9y dy“ot dy ot dy ) oy
5 2,92 2 43
+Ya_82u3+ b a—ua—?a “ +(8_uj —a;l -Lu+G0+G.C
oy ot dy gy dtdy \dy ) dy“or
where
1
Ha+—=12.
Da

Applying the Laplace transform to both sides of Eq.(3.19a) gives

2 3 4 242
L{a—u}—L{Sa—u}:L _8_p+8 Z;+oc 8214 +B, 82u2+3b[8_uj a—?+
ot dy ox 9y dy“ot dy“ot dy) dy

’u ou 9°u 9°u ou) ou

2
Yy, ——tVW| 22—+ =— | —— |- Lu+GO0+G.C;.
v y’or’ Yb[ dy 9y” dtdy [3)/} 3y23t} ?

(3.18)

(3.19)

(3.19a)

(3.20)
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but
L{a—u}=sL{u(y,t)}—u(y,0). (3.21)

Hence

2 3 4 2 2
L{”(yﬁt)}ZU(J;O)JréL{_a_p+Sa—u+a”+ o’u B ou +Bb(auJ a_”+

o +B, —
ox dy 9’ o dylor’ ) o’
, (3.22)
5 22 3
+7a%+ b a_ua_za_“[a_u] aTu -Lu+G.0+G.Cy.
dy“ot dy gy dtdy \dy ) dy“or
Taking the inverse Laplace transform of both sides of Eq.(3.22), we have
u (.0 2 3 4
cH{u(y.l}=r" “(».0) )—a—p+iL s, 9 ?+u 8214 +B, 82u2+
s ox s y oy dy” ot dy“ot
+B (a—uf az”+«y ou +7, 28_u£)2_u ou +(a—u}2—a3u —Lu+
’ ) »’ o’ ’ dy oy dtdy \dy ) oyor ’
-y -y 2 -y 2 3
Sl g € _Se e |+ e—+L—S2e‘y+lfe‘y L (L
s P, PP P 21| 31
Vo 3Le 8%V 3ljeY  Set 20,Se
f ey e Sre dhe  Se’  Zhjte —[}Se™ 1,87 +
PP P, P, P, P,
(3.23)
G -y -y -y
+l]3e‘y+S3e‘y))+—C eV 4| S SeV —K e |t + ¢ e |
s S. s? S,
2K, e 2 e Vo 2K,e”
R L K Se” 8% v K2 |y € _35e” ke,
e 2008} s s?
K -y 2 -y K2 -y K e
JORSe”  357e”  SKe” | Ke —K, 8% —3K?Se™ +
SC SC SC SC
;3
_S3e—y _Kfe—J’)_] ,
3!
or
e’ e’ i’
u(y,t)=h+e” +(Gce_y+Gre_y)t+ — =28+l +——-K, eV |—+
P, S, 21
Y 2he R V2K, s
f el ey e 2507 2Rl ok sev i ke |y (3.24)
P’ P s S, S, 31

Vo 3lLe  S§2eV 317 -y 20,8e7Y
+] £ -+ 162 _Se” (Jher Se”  Ayle —[}Se™ —1,S%e vl +
By By F, F, B, b,
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¥ 3S¢Y 2K.e? 6K.Se? 38%7 3K’V K.
-~ + + + - +

sisT s S, S. s. s,
4 2 3
K,S% 3K2Se Y —Kje ) Dplsdu, 0, 0u
4! s ) N
cont.3.24
+B A + (a—ufﬂﬂ( _Ou_ + ( )
‘o ) a? Mot
udu’u (Y u
V| 25— o | =5 |~ Lu
dy gy” dtdy \ dy ) dy“ot
ing the homoto erturbation method to Eq.(3.24), gives
Applying the h Py p bati hod to Eq.(3.24), gi
S pr -y -y -y e’ -y e
ZP u,(y,t)=h+e +(Gce +G,e )t+ ——28e™ +1lje +S—
n=0 % ¢
2 y ~y -y y -y
—K,e‘y)t—+ ¢ e piRey 425 _2Kee +2K,Se™ +
20 (PP P sZ S, S.

3 -y -y 2,7y 2,7y -y -y
+Kfe_y)t—+ e_+3lle _Se +3lle _Se”  2I;Se —ZIZSe_y+
A A I A

—y -y ~y -y 2,7y 2,7y
_stge_y+lj3€_y+e__3Se _2K,e +6K,Se +3S e +3Kre N
s S? S, S, S, (3.25)
—y 4 2
Ko k2 _sk2ser —kPer oap| L g, ou,
S. 4! s dy ayz
u o%u u
+a +B, +B,H, (u,)+v,——+
o ol (1) "%
udu ?u (ou) du
+Yp 2Hb(un)+Hc(un)__2_+(_] 3.2, —121/1
dy gy” dtdy \ dy ) dy“ot

where, H,,(u,),H,(u,) and H,(u,) are the He’s polynomials for

[aqu ou 9°u 9°u [aujz o%u
— | = and — ,
ay ) dy ay2 otdy ay 8y2 ot

respectively.
du

2
j are as follows
dy

The He’s polynomials for (
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Hy () =(p)

H](u):Zu(')u'],

5 (3.26)
HZ (u):2u0u2 +(u1) N
H; (u):Zu}u'Z,
2,92
The He’s polynomials for a_ua_ua_u are as follows
dy 9y’ dtdy
Hy(u)= ugit'y,,
Hy(u)= ”g” "11+ ”;'” '}t’
W w (3.27)
HZ (M) = U()uzt +M1U1t +M2u()t,
Hj(u)= ”I”Zt + uzuh,
3
The He’s polynomials for (a_uJ J 2“ are as follows
dy ) 9y ot
' 2 " il
Ho(“)=(”0) (”oum)a
Hy(u)= (“0) (“0“1:)+(“0) (“1”0z)+2’40“1 (“oum),
(3.28)

Hy () = () (g )+ (11y)” (aur, )+ (1) (w3, ) +

+2UOUI (Uoult ) + 21/101/11 (uluot ) + 21/101/12 (UOUOI),

Now, comparing the like powers of "P" in Eq.(3.25) and equating their coefficients gives
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p eV -y P
Psug (y,t)=A+e” y+(Ge Y+Ge” y)t+ € oS Y+le” y+——K =+
P. S, 21
Vo 2]V ~ Y 2Se™V 2K eV _ P
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Therefore, the solution to Eq.(2.16) is;
u(y,t)=ug(y,t)+u;(v.t)+: (3.32)

where, u,(y,t) and u;(y,t) are defined in Eq.(3.29) and (3.31) respectively.

The physical momentum, heat and mass properties such as the skin friction, Nusselt and Sherwood
number, which are elucidated in Arifuzzaman et al. [8] are:

1 -3 (du
Cp=——=G 7| 2|
/ 2\/5 [ayjy=0

(3.33)

4. Results and discussion

An unsteady MHD flow of a fourth-grade fluid in a horizontal parallel plates channel with thermal
radiation, chemical reaction and suction effects has been analyzed. The impact of thermal radiation, chemical
reaction, suction, third and fourth-grade parameters along with other pertinent flow parameters are plotted
graphically on different flow fields. The default values for the pertinent flow parameters are taken as
(Arifuzzaman [8])

A=0.30, 0=020, B,=0.05 B,=005 vy,=0.05 7,=0005 S, =0.50,

G.=5, G,=5 P.=0.71, Ha=030, 8=.05, Da=1.00, K,=0.50.
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To validate the present work, a numerical comparison is provided in Tab.1. It can be seen there is no significant
difference. The impact of flow parameters on the skin friction C, Nusselt number V, , Sherwood number S,

is also investigated and presented in Tab.2.

Table 1. Validation of present study against Arifuzzaman [8] for the steady state Nusselt number, where P. =0.71.

d Nusselt number N, Nusselt number N, Difference
(Present work) (Arifuzzaman et al. [8])
0.05 0.54190 0.49308 0.05
0.10 0..63411 0.58207 0.05
0.15 0.40762 0.39764 0.01
0.20 0.40981 0.37984 0.03

Table 2. Computational values of the skin friction C' , Nusselt number N, and Sherwood number S, .

s ) Ha P. o | B,=By| Y.=V| K, S, C, N, S,
0.20 | 0.05 | 030 | 0.71 | 0.05| 0.05 0.05 | 050 | 050 | 2.0045 | 0.5519 0.3494
0.30 1.9544 | 0.5383 0.3401
0.40 | 0.10 1.9092 | 0.5358 0.3312
0.50 | 0.15 1.8639 | 0.5328 | 0.3227

0.20 | 0.60 1.8959 | 0.5885 0.3494
0.80 1.7986 | 0.5519 0.3494

1.00 | 1.00 1.6727 | 0.5510 0.3494

1.50 1.9283 0.6102 0.3494

2.00 | 0.10] 0.10 22777 | 0.7171 0.3494

0.80 0.20 | 0.20 2.8109 | 0.4615 0.2996
030 0.30 0.10 3.3347 | 0.5519 0.3494

0.20 3.8775 | 0.5519 0.3494

0.30 | 1.00 4.2177 | 0.5519 0.3064

1.50 | 0.70 | 1.9216 | 0.5519 0.2034

2.00 | 0.80 | 1.9021 | 0.5519 | 0.1493

1.20 | 1.9107 | 0.5519 0.0911

Table 2 presented the effect of flow parameters on the skin friction C;, Nusselt number N, , Sherwood

number S),. It is seen that the skin friction develops due to the increase in §,P.,0.,B,,B8,,Y, and Yy, but
diminishes due to an increase in S,Ha,K, and S, . The Nusselt number increases with an increase of P. and
decreases with an increase in S and &. The Sherwood number diminishes due an increase in S,K, and S, .

Figures 2 and 3 depict the velocity and temperature fields for the increment in the thermal radiation parameter
) (0.05 <62 0.40) . Thermal radiation is known as electromagnetic radiation or the conversion of thermal
energy which generates the thermal motion of particles in matter. Thermal radiation could be attributed to
thermal excitation. Both velocity and temperature fields are affected significantly by on increase in the thermal

radiation parameter (§) .
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Fig.2. Effect of 8 on Velocity profile u .

— 420,05
== =420.15
----- 4%0.30

420,40

Ay.t)

Fig.3. Effect of & on temperature distribution 6.

The effect of the chemical reaction parameter (X,) on velocity and concentration profiles is depicted
in Figs 4 and 5 respectively. Due to the rise of the chemical reaction (K,) from 0.50< K, =2.00 , the velocity

field decreases, and the concentration field also decreases. Physically, chemical reaction occurs with more
disturbance which develops the molecular motion and upsurges the heat transport phenomena and as a result
retards the velocity of the flow.

...... K =0.50
—
- ==K =150
= e K, *2.00
..... e .
........ s ———
--------- o
2 25 3

Fig.4. Effect of K, on velocity profile u .
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—K =0.50
- ==K 1,00
..... K =1.50

e K #2.00

Fig.5. Effect of K, on concentration distribution C .

Figure 6 illustrates the drag force effect on the fluid flow. The velocity profile decreases with an
increment in the Hartmann number (0.] 0< Ha 20.90). The role of the Hartmann number, which is the

magnetic parameter, is to suppress turbulence. Physically, when a magnetic field is applied to any fluid, the
apparent viscosity of the fluid increases to the point of becoming a viscous elastic solid. It is of great interest
that yield stress of the fluid can be controlled very accurately through variation of the magnetic field intensity.
The result is that the ability of the fluid to transmit force can be controlled with the help of an electromagnet
which give rise to many possible control-based applications, including MHD power generation,
electromagnetic casting of metals, MHD propulsion, etc.

\\
. "._
TEs N R
. \\ h M.
ML 220.30
N ‘\\ J—— Has0.60

Ha=090

N N N AN AR

Fig.6. Effect of Ha on velocity profile « .

Fig.7. Effect of B, and B, on velocity profile u .
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The effect of third-grade and fourth-grade parameters on velocity profiles are respectively illustrated
in Figs 7 and 8. It is observed that the velocity profile develops with an increase in both third-grade
(0.10 <(B,=By)2 0.40) and fourth-grade (0.10 <(y, =7, )= 0.40 ) parameters.

u(y.t)

Fig.8. Effect of y, and 7y, on velocity profile u.
The impact of the suction parameter S on velocity, temperature and concentration profiles is

illustrated in Figs 9, 10 and 11 respectively. It is clearly seen that velocity, temperature and concentration
profiles diminish with an increase of S (0.1 0<S2 0.40) . This is due to the porosity of plates.

AN e §=0.10

uiy.t)

Fig.9. Effect of S on velocity profile u.

Fig.10. Effect of S on temperature distribution 6.
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—$#0.10
-=-=520.20
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......... S—D 40

Ciy.t)

Fig.11. Effect of S' on concentration distribution 6.

5. Conclusion

An unsteady MHD flow of fourth-grade in a horizontal parallel plates channel with thermal radiation,

chemical reaction and suction effects has been investigated. The solutions for the nonlinear partial differential
equations are obtained by the He-Laplace scheme. The effects of flow parameters on velocity, temperature and
concentration profiles are depicted in figures and discussed. From the results obtained, the findings are:

Velocity and temperature fields rise due to the increment the thermal radiation parameter.
For upsurging data of chemical reaction, velocity and concentration fields diminish.
Velocity, temperature and concentration fields diminish due to the increment in the suction parameter.
Velocity profile goes up when third and fourth-grade parameters get to rise.
Velocity and skin friction fields decline due to the increment in the magnetic parameter.
Nusselt number distribution rises due to the enhancement in the thermal radiation parameter and drops
due to an increase in the suction parameter.
Large values of thermal radiation parameter, Prandtl number, second, third and fourth-grade parameters
increase the skin friction while higher values of the Schmidt number, chemical reaction and suction
parameters diminish the skin friction.
The rate of mass transfer diminishes due to the rise in the Schmidt number, chemical reaction parameter
and suction parameter.

The results of this work are applicable in many industrial production processes such as in the drilling of

oil and gas wells, polymer extrusion from dye, glass fiber, paper production and draining of plastics films, etc.

This work can be extended to a plane Poisueille flow of a fourth grade fluid by taking into account the

viscous dissipation and buoyancy effects.
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Nomenclature

B, — external magnetic field

C —species concentration
C, — specific heat capacity

Cr — skin friction
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C,, —concentration at the surface
C., —concentration as y — o
G, — Grashof number due to mass transfer
G, — Grashof number due to heat transfer
Ha — Hartmann number
K, —chemical reaction parameter
— Nusselt number
— Prandtl number
g, —radiative heat flux
S — suction parameter
— Schmidt number
S, — Sherwood number
T —temperature of the fluid
T,, —temperature at the surface
T., —ambient temperature as y — oo
u — fluid velocity
y — cartesian coordinates
o —second grade parameter
B — thermal expansion coefficient
B, By, — third grade parameters
B, — concentration expansion coefficient
Y. ¥, — fourth grade parameters
8 - thermal radiation parameter
w — coefficient of shear viscosity
v —kinematic viscosity
p — density of the fluid
o — Stefan Boltzmann constant
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