PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review of Surface Acoustic Wave Sensors for the Detection and Identification of Toxic Environmental Gases/Vapours

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detection and identification of toxic environmental gases have assumed paramount importance precisely in the defense, industrial and civilian security sector. Numerous methods have been developed for the sensing of toxic gases in the environment ever since surface acoustic wave (SAW) technology came into existence. Such SAW sensors called electronic nose (E-Nose) sensor use the frequency response of a delay line/resonator. SAW device is focused and given importance. The selective coating between input and output interdigital transducers (IDTs) in the SAW device is responsible for corresponding changes in operating frequency of the device for a specific gas/vapour absorbed from the environment. A suitable combination of well-designed SAW delay lines with selective coatings not only help to improve sensor sensitivity and selectivity but also leads to the minimization of false frequency alarms in the E-Nose sensor. This article presents a comprehensive review of design, development, simulation and modelling of a SAW sensor for potential sensing of toxic environmental gases.
Rocznik
Strony
357--367
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Department of Physics, Chikkanna Government Arts College, Tirupur, Tamilnadu-641 602, India
autor
  • Department of Physics, Chikkanna Government Arts College, Tirupur, Tamilnadu-641 602, India
autor
  • Department of Physics, Chikkanna Government Arts College, Tirupur, Tamilnadu-641 602, India
Bibliografia
  • 1. Afzal A., Cioffi N., Sabbatini L., Torsi L. (2012), NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives, Sensors and Actuators B: Chemical, 171-172, 25-42.
  • 2. Afzal A., Iqbal N., Mujahid A., Schirhagl R. (2013), Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review, Analytica Chimica Acta, 787, 36-49.
  • 3. Alizadeh T., Zeynali S. (2008), Electronic nose based on the polymer coated SAW sensors array for the warfare agent simulants classification, Sensors and Actuators B: Chemical, 129, 412-423.
  • 4. Balcerzak A., Aleksiejuk M., Zhavnerko G., Agabekov V. (2010), Sensing properties of twocomponent Langmuir-Blodgett layer and its porous derivative in SAW sensor for vapors of methanol and ethanol, Thin Solid Films, 518, 12, 3402-3406.
  • 5. Banupriya R., Venkatesan T., Pandiyarajan G., Pandya H. M. (2014), SAW devices – a comprehensive review, Journal of Environmental Nanotechnology, 3, 106-115, doi: 10.13074/jent.2014.09.143101.
  • 6. Barsan N., Koziej D., Weimar U. (2007), Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, 121, 18-35.
  • 7. Chang P., Shih J.S. (1998), Preparation and application of cryptand-coated piezoelectric crystal gaschromatographic detector, Analytica Chimica Acta, 360, 1-3, 61-68.
  • 8. Devkota J., Ohodnicki P., Greve D. W. (2017), SAW Sensors for Chemical Vapors and Gases, Sensors, 17, 4, 01.
  • 9. Dewan N., Haridas D., Shandilya S., Sreenivas K., Gupta V. (2008), Influence of temperaturę stability on sensing properties of SAW NOx sensor, Indian Journal of Engineering & Materials Sciences, 15, 352-354.
  • 10. Dickert F. L., Forth P., Bulst W-E., Fischerauer G., Knauer U. (1998), SAW devices-sensitivity enhancement in going from 80 MHz to 1 GHz, Sensors and Actuators B: Chemical, 46, 2, 120-125.
  • 11. Du X., Ying Z., Jiang Y., Liu Z., Yang T., Xie G. (2008), Synthesis and evaluation of a new polysiloxane as SAW sensor coatings for DMMP detection, Sensors and Actuators B: Chemical, 134, 2, 409-413.
  • 12. El Gowini M. M., Moussa W. A. (2010), A finite element model of a MEMS-based surface acoustic wave hydrogen sensor, Sensors, 10, 2, 1232-50.
  • 13. Fu C. et al. (2017), Design and Implementation of 2.45 GHz Passive SAW Temperature Sensors with BPSK Coded RFID Configuration, Sensors, 17, 8, 1849.
  • 14. Grate J. W., Patrash S. J., Abraham M. H. (1995), Method for estimating polymer-coated acoustic wave vapor sensor responses, Analytical Chemistry, 67, 13, 2162-2169, doi: 10.1021/ac00109a040.
  • 15. Hao H. C. et al. (2010), Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics, Sensors and Actuators B: Chemical, 146, 2, 545-553.
  • 16. Haridas D., Chowdhuri A., Sreenivas K., Gupta V. (2010), Fabrication of SnO2 thin film based electronic nose for industrial environment, [in:] 2010 IEEE Sensors Applications Symposium (SAS), pp. 212-215.
  • 17. Harmer G. P., Yang C., Marquis B. T. (2004), Detection of chemical warfare agents in the presence of interferents, Proceedings of IEEE Sensors 2004, Vol. 3, pp. 1506-1509, doi: 10.1109/ICSENS.2004.1426474.
  • 18. Ho C. K., Robinson A., Miller D. R., Davis M. J. (2005), Overview of sensors and needs for environmental monitoring, Sensors (Basel), 5, 2, 4-37.
  • 19. Islam T., Nimal A. T., Mittal U., Sharma M. U. (2015), A micro interdigitated thin film metal oxide capacitive sensor for measuring moisture in the range of 175-625 ppm, Sensors and Actuators B: Chemical, 221, 357-364.
  • 20. Jakubik W. P. (2011), Surface acoustic wave-based gas sensors, Thin Solid Films, 520, 3, 986-993.
  • 21. Jakubik W., Powroznik P., Wrotniak J., Krzywiecki M. (2016), Theoretical analysis of acoustoelectrical sensitivity in SAW gas sensors with single and bi-layer structures, Sensors and Actuators B: Chemical, 236, 1069-1074.
  • 22. Jha S., Yadava R. (2010), Development of surface acoustic wave electronic nose, Defence Science Journal, 60, 4, 364-376.
  • 23. Jha S. K., Hayashi K., Yadava R. D. S. (2014), Neural, fuzzy and neuro-fuzzy approach for concentration estimation of volatile organic compounds by Surface acoustic wave sensor array, Measurement, 55, 186-195.
  • 24. Joo B. S., Huh J. S., Lee D. D. (2007), Fabrication of polymer SAW sensor array to classify chemical warfare agents, Sensors and Actuators B: Chemical, 121, 1, 47-53.
  • 25. Kannan G. K., Nimal A. T., Mittal U., Yadava R. D. S., Kapoor J. C. (2004), Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection, Sensors and Actuators B: Chemical, 101, 3, 328-334.
  • 26. Khaneja M., Mittal U. (2008), Design and modeling of a two-port surface acoustic wave resonator using coupling-of-modes theory, Defence Science Journal, 58, 3, 372-376.
  • 27. Knauer U., Machui J., Ruplpel C. C. W. (1997), Design, fabrication, and application of GHz SAW devices, 1997 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, Denver, Co, USA, pp. 1821-1824, doi: 10.1109/MWSYM.1997.596915.
  • 28. Kumar A. K. S. et al. (2004), High-frequency Surface acoustic wave device based on thin-film piezoelectric interdigital transducers, Applied Physics Letters, 85, 10, 1757-1759.
  • 29. Li B., Yassine O., Kosel J. (2015), A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity, IEEE Sensor Journal, 15, 1, 453-462.
  • 30. Lim C., Wang W., Yang S., Lee K. (2011), Development of SAW-based multi-gas sensor for simultaneous detection of CO2and NO2, Sensors and Actuators B: Chemical, 154, 9-16.
  • 31. Luo W., Fu Q., Zhou D., Deng J., Liu H., Yan G. (2013), A surface acoustic wave H2S gas sensor employing nanocrystalline SnO2thin film, Sensors and Actuators B: Chemical, 176, 746-752.
  • 32. Matatagui D. et al. (2009), Optimized design of a SAW sensor array for chemical warfare agents simulants detection, Procedia Chemistry, 1, 1, 232-235.
  • 33. Matatagui D. et al. (2011a), Discrimination and classification of chemical warfare agent simulants using a Love-wave sensor array, Procedia Engineering, 25, 23-26.
  • 34. Matatagui D. et al. (2011b), Chemical warfare agents simulants detection with an optimized SAW sensor array, Sensors and Actuators B: Chemical, 154, 2, 199-205.
  • 35. Matatagui D. et al. (2012), Comparative evaluation between two acoustic immunosensors: Love-wave and QCM, and systems of measurement: dynamic and static, Procedia Engineering, 47, 174-177.
  • 36. Matatagui D., Kolokoltsev O. V., Qureshi N., Mejía-Uriartea E. V., Sanigerb J. M. (2015), A novel ultra-high frequency humidity sensor based on a magnetostatic spin wave oscillator, Sensors and Actuators B: Chemical, 210, 297-301.
  • 37. McGill R. A. et al. (2000), “NRL-SAWRHINO”: A nose for toxic gases, Sensors and Actuators B: Chemical, 65, 1-3, 10-13.
  • 38. Mittal U., Islam T., Nimal A. T., Sharma M. U. (2015), A novel sol-gel γ-Al2O3thin-film-based rapid SAW humidity sensor, IEEE Transactions on Electron Devices, 62, 12, 4242-4250.
  • 39. Moore D. S. (2004), Instrumentation for trace detection of high explosives, Review of Scientific Instruments, 75, 8, 2499-2512.
  • 40. Morgan D. P. (1998), History of SAW devices, Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No. 98CH36165), Pasadena, CA, pp. 439-460.
  • 41. Mseddi S., Tekeli F., Njeh A., Donner W., Ben Ghozlen M. H. (2016), Effect of initial stress on the propagation behavior of SAW in a layered piezoelectric structure of ZnO/Al2O3, Mechanics Research Communications, 76, 24-31.
  • 42. Nimal A. T. et al. (2009), Development of handheld SAW vapor sensors for explosives and CW agents, Sensors and Actuators B: Chemical, 135, 2, 399-410.
  • 43. Nimal A. T., Singh M., Mittal U., Yadava R. D. S. (2006), A comparative analysis of one-port Colpitt and two-port Pierce SAW oscillators for DMMP vapor sensing, Sensors and Actuators B: Chemical, 114, 1, 316-325.
  • 44. Pandya M. H. (2010), Design and Modelling of Surface Acoustic Wave (SAW) Devices and Sensors, Bharathiar University.
  • 45. Pandya H. M., Sharma M. U., Nimal A. T., Rajesh K. B. (2013), Impulse modelled response of a 300 MHz ST-quartz SAW device for sensor specific applications, Journal of Environmental Nanotechnology, 2, 15-21, doi: 10.13074/jent.2013.02.nciset33.
  • 46. Plesski V. (2005), Saw device with suspended electrodes, WO/2005/112258.
  • 47. Priya R. B., Venkatesan T., Pandya H. M. (2016), A comparison of surface acoustic wave (SAW) delay line modelling techniques for sensor applications, Journal of Environmental Nanotechnology, 5, 42-47.
  • 48. Raj V. B. (2012), Fabrication of metal oxide thin films based surface acoustic wave (SAW) sensors for the detection of toxic vapors/gases, University of Delhi.
  • 49. Raj V. B., Nimal A. T., Parmar Y., Sharma M. U., Gupta V. (2012a), Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor, Sensors and Actuators B: Chemical, 166-167, 576-585, doi: 10.1016/j.snb.2012.03.013.
  • 50. Raj V. B., Nimal A. T., Parmar Y., Sharma M. U., Sreenivas K., Gupta V. (2010), Cross-sensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor, Sensors and Actuators B: Chemical, 147, 2, 517-524.
  • 51. Raj V. B., Nimal A. T., Tomar M., Sharma M. U., Gupta V. (2015a), Novel scheme to improve SnO2/SAW sensor performance for NO2gas by detuning the sensor oscillator frequency, Sensors and Actuators B: Chemical, 220, 154-161.
  • 52. Raj V. B., Singh H., Nimal A. T., Sharma M. U., Gupta V. (2013a), Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents, Sensors and Actuators B: Chemical, 178, 636-647.
  • 53. Raj V. B., Singh H., Nimal A. T., Sharma M. U., Tomar M., Gupta V. (2017), Distinct detection of liquor ammonia by ZnO/SAW sensor: Study of complete sensing mechanism, Sensors and Actuators B: Chemical, 238, 83-90.
  • 54. Raj V. B., Singh H., Nimal A. T., Sharma M. U., Tomar M., Gupta V. (2012b), Utilization of mass and elastic loading in oxide materials based SAW devices for the detection of mustard gas simulant, Advanced Materials Research, 488-489, 1558-1562.
  • 55. Raj V. B., Singh H., Nimal A. T., Tomar M., Sharma M. U., Gupta V. (2013b), Effect of metal oxide sensing layers on the distinct detection of ammonia using surface acoustic wave (SAW) sensors, Sensors and Actuators B: Chemical, 187, 563-573, doi: 10.1016/j.snb.2013.04.063.
  • 56. Raj V. B., Singh H., Nimal A. T., Tomar M., Sharma M. U., Gupta V. (2015b), Origin and role of elasticity in the enhanced DMMP detection by ZnO/SAW sensor, Sensors and Actuators B: Chemical, 207, 375-382.
  • 57. Röck F., Barsan N., Weimar U. (2008), Electronic nose: Current status and future trends, Chemical Reviews, 108, 2, 705-725.
  • 58. Rodríguez-Madrid J. G., Iriarte G. F., Williams O. A., Calle F. (2013), High precision pressure sensors based on SAW devices in the GHz range, Sensors and Actuators A: Physical, 189, 364-369.
  • 59. Sferopoulos R. (2009), A Review of Chemical Warfare Agent (CWA) detector technologies and commercial-off-the-shelf items, Human Protection and Performance Division, Defence Science and Technology Organisation, Fishermans Bend, Australia.
  • 60. Sharma M. U. et al. (2014), Modelling of SAW devices for gas sensing applications – a comparison, Journal of Environmental Nanotechnology, 3, 63-66.
  • 61. Singh H. et al. (2014), Metal oxide SAW E-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol, Sensors and Actuators B: Chemical, 200, 147-156.
  • 62. Singh H. et al. (2016), SAW mono sensor for identification of harmful vapors using PCA and ANN, Process Safety and Environmental Protection, Transactions of the Institution of Chemical Engineers, Part B, 102, 577-588.
  • 63. Smith J. P., Hinson-Smith V. (2006), The new era of SAW devices, Analytical Chemistry, 78, 11, 3505-3507.
  • 64. Tasaltin C., Ebeoglu M. A., Ozturk Z. Z. (2012), Acoustoelectric effect on the responses of saw sensors coated with electrospun ZnO nanostructured thin film, Sensors (Basel), 12, 9, 12006-12015.
  • 65. Tigli O., Zaghloul M. E. (2008), Design, modeling, and characterization of a novel circular surface acoustic wave device, IEEE Sensors Journal, 8, 11, 1807-1815.
  • 66. Venkatesan T., Pandya H. M. (2013), Surface acoustic wave devices and sensors – a short review on design and modelling by impulse response, Journal of Environmental Nanotechnology, 2, 81-90.
  • 67. Verma P., Yadava R. D. S. (2015), Polymer selection for SAW sensor array based electronic noses by fuzzy c-means clustering of partition coefficients: Model studies on detection of freshness and spoilage of milk and fish, Sensors and Actuators B: Chemical, 209, 751-769.
  • 68. Wetchakun K. et al. (2011), Semiconducting metal oxides as sensors for environmentally hazardous gases, Sensors and Actuators B: Chemical, 160, 1, 580-591.
  • 69. Wilson W. C., Atkinson G. M. (2007a), Rapid SAW Sensor Development Tools, NASA Technical Reports, https://ntrs.nasa.gov/search.jsp?R=20070017252.
  • 70. Wilson W. C., Atkinson G. M. (2007b), Frequency domain modeling of SAW devices, NSTI Nanotech 2007 – 10th International Conference on Modeling and Simulation of Microsystems; 20-24 May 2007; Santa Clara, CA; United States, pp. 73-76.
  • 71. Wohltjen H., Dessy R. (1979), Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Analytical Chemistry, 51, 9, 1458-1464.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c506f05-d386-4544-9e33-8571a5f7396f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.