PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extraction of selected metals from waste printed circuit boards by bioleaching acidophilic bacteria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ekstrakcja wybranych metali z odpadowych obwodów drukowanych w procesie bioługowania bakteriami
Języki publikacji
EN
Abstrakty
EN
Technological innovations and increased demand for electronic devices resulted in production of more and more waste with high metal content. Worldwide, 50 million tons of WEEE (Waste from Electrical and Electronic Equipment) are generated each year. Given the metal content present in electrical waste (e-waste), it is considered to be an urban mine and, if properly treated, can serve as an alternative secondary source of metals. Waste printed circuit boards (WPCBs) that constitute approx. 3-5% of WEEE by weight are of particular importance. ey contain, on average, 30-40% of metals by weight, with higher purity than in minerals. With environmental and economic benefits in mind, increasing attention is being paid to the development of processes to recover metals and other valuable materials from WPCBs. e research presented in the article aimed at assessing the usefulness of the biotechnological method for leaching of selected metals from e-waste. e results indicate that it is possible to mobilize metals from WPCBs using microorganisms such as Acidithiobacillus ferroxidans bacteria.
PL
Szybki rozwój technologiczny i wzrost popytu na urządzenia elektroniczne prowadzą do powstawania coraz większej ilości odpadów o dużej zawartości metali. Na całym świecie każdego roku wytwarza się 50 milionów ton odpadów elektronicznych (WEEE). Biorąc pod uwagę zawartość metali w nich obecnych, uważa się je za urban mining i jeśli zostaną one odpowiednio przetworzone, mogą służyć jako alternatywne, wtórne źródło metali. Szczególne znaczenie mają odpadowe obwody drukowane (WPCBs) stanowiące 3-5% WEEE. Zawierają one średnio 30-40% wagowych metali, o czystości większej niż w minerałach. Mając na uwadze korzyści środowiskowe i ekonomiczne, coraz większą uwagę przywiązuje się do rozwoju procesów odzyskiwania metali i innych cennych materiałów z odpadów PCBs. Badania przedstawione w artykule miały na celu ocenę przydatności metody biotechnologicznej do ługowania wybranych metali z odpadów elektronicznych. Wyniki wskazują, że jest możliwe mobilizowanie metali z PCBs przy użyciu mikroorganizmów takich jak bakterie Acidithiobacillus ferroxidans.
Rocznik
Tom
Strony
43--52
Opis fizyczny
Bibliogr. 50 poz., rys., zdj.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Department of Environmental Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Department of Environmental Engineering, Krakow, Poland
Bibliografia
  • 1. Akcil A., Erust C., Gahan C.S., Ozgun M., Sahin M., Tuncuk A., 2015. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review. Waste Management, 45, 258-271
  • 2. Arshadi M., Mousavi S.M., 2014. Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: Statistical evaluation and optimization. Bioresource TechnologyVol. 174, Pages 233-242
  • 3. Arshadi M., Pourhossein F., Mousavi S.M., Yaghmaei S., 2021. Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted A. ferrooxidans in a bubble column bioreactor. Separation and Purification Technology, 118701
  • 4. Awasthi A.K., Hasan M., Mishra Y.K., Pandey A.K., Tiwary B.N., Kuhad R.C., Gupta V.K., #akur V.K., 2019. Environmentally sound system for E-waste: Biotechnological perspectives. Current Research in Biotechnology, 1, 58–64
  • 5. Bas A.D., Deveci H., Yazici E.Y., 2013. Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138, 65–70
  • 6. Blažek V., Zavada J., Bouchal T., Lebr J., Fečko P.,2012. Leaching of Copper and Tin from Electronic Waste Using Acidithiobacillus ferrooxidans. Journal of the Polish Mineral Engineering Society , No 1(28), p. 1–7.
  • 7. Bosecker K., 2006. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev., 20, pp. 591-604
  • 8. Brandl H., Bosshard R., Wegmann H., 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59 (2–3), 319-326
  • 9. Chi T.D., Lee J.C., Pandey B.D., Yoo K., Jeong J., 2011. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner. Eng., 24 (11), 1219-1222
  • 10. Cui J., Zhang L., 2008. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials, 158(2-3), 228-256
  • 11. Faraji F., Golmohammadzadeh R., Rashchi F., Alimardani N., 2018. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. Journal of Environmental Management 217, 775-787
  • 12. Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandl H., 2004. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J. Biotechnol., 113 (1-3), 321-326
  • 13. Garg H., Nagar N., Ellamparuthy G., Angadi S.I., Gahan C.S., 2019. Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Heliyon, vol. 5 (12)
  • 14. Hao J., Wang Y., Wua Y., Guo F., 2020. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resources, Conservation and Recycling, 157
  • 15. Hołda A., Krawczykowska A., 2020. Bioleaching of Selected Metals from Waste Printed Circuit Boards by Fungi. Journal of the Polish Mineral Engineering Society, 161-169
  • 16. Hong Y., Valix M., 2014. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal of Cleaner Production 65, 465-472
  • 17. Hubau A., Minier M., Chagnes A., Joulian C., Silvente C., Guezennec A-G., 2020. Recovery of metals in a double- stage continuous bioreactor for acidic bioleaching of printed circuit boards (PCBs). Separation and Purification Technology, Vol. 238
  • 18. Ilyas S., Lee J.C., 2013. Fungal leaching of metals from electronic scrap. Miner. Metall. Process., 30 (3), 151-156
  • 19. Ilyas S., Lee J-c., Chi R-a., 2013. Bioleaching of metals from electronic scrap and its potential for commercial exploitation. Hydrometallurgy, Vol. 131–132, 138-143
  • 20. Ilyas S., Ruan C., Bhatti H.N., Ghauri M.A., Anwar M.A., 2010. Column bioleaching of metals from electronic scrap. Hydrometallurgy, 101 (3–4), 135-140
  • 21. Işıldar A., van Hullebusch E.D., Lenz M.,Du Laing G., Marra A., Cesaro A., Panda S., Akcil A., Kucuker M.A., Kuchta K., 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials, Vol. 362, 467-481
  • 22. Jadhav U., Su C., Hocheng H. 2016. Leaching of metals from printed circuit board powder by an Aspergillus niger culture supernatant and hydrogen peroxide. RSC Adv., 6 (49), 43442-43452
  • 23. Karthik O., Rajasekar A., Balasubramanian R., 2014. Bio-Oxidation and Biocyanidation of Refractory Mineral Ores for Gold Extraction: A Review. Critical Reviews in Environmental Science and Technology 45(15)
  • 24. Karwowska E., Andrzejewska-Morzuch D., Lebkowska M., Tabernacka A., Wojtkowska M., Telepko A., Konarzewska A. 2014. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J. Hazard. Mater., 264, 203-210
  • 25. Kaya, M., 2017. Recovery of metals and nonmetals from waste printed circuit boards (PCBs) by physical recycling techniques. Energy Technology, pp. 433-451
  • 26. Khatri B.R., Sodha A.B., Shah M.B., Tipre D.R., Dave S.R., 2018. Chemical and microbial leaching of base metals from obsolete cell-phone printed circuit boards. Sustainable Environment Research, Vol. 28, 6, 333-339
  • 27. Kolenčik M., Urik M., Čerňansky S., Molnarova M., Matuš P., 2013. Leaching of Zinc, Cadmium, Lead and copper from electronic scrap using organic acids and the Aspergillus Niger strain. Fresenius Environmental Bulletin 22 (12)
  • 28. Krebs W., Brombacher C., Bosshard P., Bachofen R., Brandl H., 2006. Microbial recovery of metals from solids. FEMS Microbiol. Rev., 20, pp. 605-617
  • 29. Lambert F., Gaydardzhiev S., Leonard G., Lewis G., Bareel P.F., Bastin D., 2015. Copper leaching from waste electric cables by bio-hydrometallurgy. Mineral Engineering, 76, pp. 38-46
  • 30. Latorre M., Cortes M.P., Travisany D., Di Genova A., Budinich M., Reyes-Jara A., Hodar C., Gonzalez M., Parada P., Bobadilla-Fazzini R.A., Cambiazo V., Maass A., 2016. The bioleaching potential of a bacterial consortium. Bioresource Technology, 218, pp. 659-666
  • 31. Li H., Eksteen J., Oraby E., 2018. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resources, Conservation and Recycling, 139, 122-139
  • 32. Lu Y., Zhenming X., 2016. Precious metals recovery from waste printed circuit boards: a review for current status and perspective. Resour. Conserv. Recycl., 113, 28-39
  • 33. Netpae T., Suckley S., 2019. Bioleaching of Cu and Pb from printed circuit boards by Rhizopus oligosporus and Aspergillus Niger. Environmental and Experimental Biology, 17, 85–89
  • 34. Pollmann K., Kutschke S., Matys S., Raff J., Hlawacek G., L.Lederer F., 2018. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnology Advances 36(4), 1048-1062
  • 35. Poser A., Vogt C., Knoller K., Ahlheim J., Weiss H., Kleinsteuber S., Richnow H. H., 2014. Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways. Environmental science & technology, 48(16), 9094–9102
  • 36. Quatrini R., Johnson D.B., 2019. Acidithiobacillus ferrooxidans. Trends in Microbiology, Vol. 27, No. 3
  • 37. Sethurajan M., Gaydardzhiev S., 2021. Bioprocessing of spent lithium ion batteries for critical metals recovery – A review. Resources, Conservation and Recycling, Vol. 165
  • 38. Shah M.B., Tipre D.R., Purohit M.S., Dave S.R., 2015. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards. J. Biosci. Bioeng., 120 (2), 167-173
  • 39. Tipre D.R,. Khatri B.R., #acker S.C., Dave S.R., 2021. #e brighter side of e-waste—a rich secondary source of metal. Environmental Science and Pollution Research, 28:10503–10518
  • 40. Valdes J., Pedroso I., Quatrini R., Dodson R.J., Tettelin H., Blake II R., Eisen J.A., Holmes D.S., 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics, 9:597
  • 41. Wang S., Zheng Y., Yan W., Chen L., Mahadevan G.D., Zhao F., 2016. Enhanced bioleaching efficiency of metals from e-wastes driven by biochar. J. Hazard. Mater., 320, 393-400
  • 42. Willner J., Fornalczyk A., 2013. Extraction of metals from electronic waste by bacterial leaching. Environment protection engineering, vol. 39, no. 1
  • 43. Willscher S., Katzschner M., Jentzsch K., Matys S., Pollmann H., 2007. Microbial leaching of metals from printed circuit boards. Adv. Mater. Res., 20-21, 99-102
  • 44. Xia M., Bao P., Liu A., Wang M., Shen L., Yu R., Liu Y., Chen M., Li J., Wu X., Qiu G., Zeng W., 2018. Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resources, Conservation and Recycling, 136, 267-275
  • 45. Xia M.C., Wang Y.P., Peng T.J., Shen L., Yu R.L., Liu Y.D., Chen M., Li J.K., Wu X.L., Zeng W.M., 2017. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J. Biosci. Bioeng., 123 (6), 714-721
  • 46. Xiang Y., Wu P., Zhu N., Zhang T., Liu W., Wu J., Li P., 2010. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184, 812-818
  • 47. Yang Y., Chen S., Li S., Chen M., Chen H., Liu B., 2014. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. Journal of Biotechnology, Vol. 173, 24-30
  • 48. Zhang Y., Liu S., Xie H., Zeng X., Li J., 2012. Current Status on Leaching Precious Metals from Waste Printed Circuit Boards. Procedia Environmental Sciences, 16, 560-568
  • 49. Zhu N., Xiang Y., Zhang T., Wu P., Dang Z., Li P., Wu J., 2011. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J. Hazard Mater 192, 614-619
  • 50. Zhuang W.Q., Fitts J.P., Ajo-Franklin C.M., Maes S., Alvarez-Cohen L., Hennebe T., 2015. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 33, 327–335
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c4a992c-1405-45b3-b510-5e816da6f4b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.