PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of FEM model of an angular contact ball bearing with its experimental verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents FEM model of an angular contact ball bearing used in spindle systems with active preload control. A two-dimensional replacement model for a single rolling element was developed. Its elastic characteristics were determined and the stress distribution was presented for the FEM 2D model. Based on the elastic characteristics for a single rolling element, a complete 3D bearing was modelled. The substitute model of a bearing developed in this way was used to model the spindle system. The elasticity curve of this spindle was determined. The last stage of the work involved the experimental verification of the FEM model using a custom-built test bench, in which piezoelectric elements were used to preload the bearings.
Słowa kluczowe
Rocznik
Strony
58--69
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
  • Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
  • Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
Bibliografia
  • [1] ZHANG J., FANG B., ZHU Y., HONG J., 2017, A comparative study and stiffness analysis of angular contact ball bearing under different preload mechanisms, Mechanism and Machine Theory, 115, 1–17.
  • [2] JĘDRZEJEWSKI J., KWAŚNY W., 2010, Modelling of angular contact ball bearings and axial displacements for high-speed spindles, CIRP Annals–Manufacturing Technology, 59, 377–382.
  • [3] CHEN J. S., CHEN K. W., 2005, Bearing load analysis and control of a motorized high speed spindle, International Journal of Machine Tools & Manufacture, 45, 1487–1493.
  • [4] JIANG S., MAO H., 2010, Investigation of variable optimum preload for machine tool spindle, International Journal of Machine Tools and Manufacture, 50, 19–28.
  • [5] CHEN F., LIU G., 2017, Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator, International Journal of Advanced Manufacturing Technology, 89/1–4, 691–700.
  • [6] HADI HOSSEINABADI A.H., ALTINTAS Y., 2014, Modeling and active damping of structural vibration in machine tools, CIRP Journal of Manufacturing Science and Technology, 7, 246–257.
  • [7] HWANG Y.K., LEE Ch.M., 2010, Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet, International Journal of Machine Tools & Manufacture, 50, 253–259.
  • [8] CIOU Y.S., LEE C.Y., 2019, Controllable preload spindle with a piezoelectric actuator for machine tools, International Journal of Machine Tools and Manufacture, 139, 60–63.
  • [9] TUREK P., SKOCZYŃSKI W., STEMBALSKI M., 2016, Comparison of methods for adjusting and controlling the preload of angular-contact bearings, Journal of Machine Engineering, 16/2, 71–85.
  • [10] HARRIS T.A., 2001, Rolling bearing analysis (4th Edition), John Wiley and Sons, New York.
  • [11] HARRIS T.A., KOTZALAS M.N., 2007, Rolling Bearing Analysis, Essential Concepts of Bearing Technology, Taylor&Francis Group, New York, 371.
  • [12] KOSMOL J., GATYS R., 2016, Simulation studies on the effect of speed rotation on forces contact us in rolling bearing, Inżynieria Maszyn, 21/1, 32–45, (in Polish).
  • [13] KOSMOL J., STAWIK K., 2016, Influence of contact stiffness coefficient and coefficient of friction on contact forces in a rolling bearing, Modelowanie Inżynierskie, 58, 65–74, (in Polish).
  • [14] CAO Y, ALTINTAS Y., 2004, A General Method for the Modelling of Spindle-Bearing Systems, Journal of Mechanical Design Transactions of the ASME, 126, 1089–1104.
  • [15] KOSMOL J., 2019, An extended contact model of the angular bearing, Journal of Theoretical and Applied Mechanics, 57/1, 59–72.
  • [16] ALTINTAS Y., CAO Y, 2005, Virtual design and Optimization of machine tool spindles, Annals of the CIRP, 54/1, 379–382.
  • [17] JEDRZEJEWSKI J., KWASNY W., KOWAL Z., WINIARSKI Z., 2014, Development of the Modelling and Numerical Simulation of the Thermal Properties of Machine Tools, Journal of Machine Engineering, 14/3, 5–20.
  • [18] SMOLNICKI T., 2002, Physical aspects of coherence of large roller bearings and deformable support structures, Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław, (in Polish).
  • [19] Super precision bearings, FAG, MATNR 036884715-0000/SP 1/GB-D/2016061.5/Printed in Germany.
  • [20] TUREK P., 2019, Modeling of dynamic properties of the spindle system with the active regulation of bearing stiffness, PhD Thesis, Wrocław University of Technology.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c49c3e4-7b18-4e41-8369-6da7ce9a97b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.