Identyfikatory
Warianty tytułu
Konferencja
Symposium Vibrations In Physical Systems (27 ; 09-13.05.2016 ; Będlewo koło Poznania ; Polska)
Języki publikacji
Abstrakty
The paper deals with the application of the continuous dynamic absorbers in vibration reduction problems in beams. The Euler-Bernoulli beam of variable cross-section is subjected to the concentrated and distributed harmonic excitation forces. The beam is equipped with a system of the continuous vibration absorbers. The problem of the forced vibration is solved employing the Galerkin’s method and Lagrange’s equations of the second kind. Performing time-Laplace transformation the amplitudes of displacement may be written in the frequency domain, similarly the time-averaged kinetic energy of any part of the beam. The results of some local and global vibration control optimization problems concerning the placement and parameters of the continuous vibration absorbers are presented.
Czasopismo
Rocznik
Tom
Strony
245--254
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
- Cracow University of Technology, Institute of Applied Mechanics, Al. Jana Pawła II 37, 31-864 Kraków
Bibliografia
- 1. J. P. Den Hartog, Mechanical Vibrations, Dover Publications, Mineola, NY 1985.
- 2. C. M. Harris, A. G. Piersol, Harris’ Shock and Vibration Handbook, McGraw-Hill, 2002.
- 3. M. Luu, V. Zabel, C. Könke, An optimization method of multi-resonant response of high-speed train bridges using TMDs, Finite Elements in Analysis and Design, 53 (2012) 13 – 23.
- 4. Q. Li, J. Fan, J. Nie, Q. Li, Y. Chen, Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers, Journal of Sound and Vibration, 329 (2010) 4068 – 4092.
- 5. E. Caetano, Á. Cunha, F. Magalhães, C. Moutinho, Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: Implementation of tuned mass dampers, Engineering Structures, 32 (2010) 1082 – 1091.
- 6. E. Esmalizadeh, N. Jalili, Optimal design of vibration absorbers for structurally damped Timoshenko beams, ASME Journal of Vibration and Acoustics, 120 (1998) 833 – 841.
- 7. M. J. Brennan, J. Dayou, Global control of vibration using a tunable vibration neutralizer, Journal of Sound and Vibration, 232(3) (2000) 585 – 600.
- 8. D. Younesian, E. Esmailzadeh, R. Sedaghati, Passive vibration control of beams subjected to random excitations with peaked PSD, Journal of Vibration and Control, 12(9) (2006) 941 – 953.
- 9. F. Yang, R. Sedaghati, Vibration suppression of non-uniform curved beams under random loading using optimal tuned mass damper, Journal of Vibration and Control, 15(2) 2009) 233 – 261.
- 10. Y. L. Cheung, W. O. Wong, Isolation of bending vibration in a beam structure with a translational vibration absorber and a rotational vibration absorber, Journal of Vibration and Control, 14(8) (2008) 1231 – 1246.
- 11. J. D. Yau, Y. B. Yang, A wideband MTMD system for reducing the dynamic response of continuous truss bridges to moving train loads, Journal of Structural Engineering, 26 (2004) 1795 – 1807.
- 12. J. D. Yau, Y. B. Yang, Vibration reduction for cable-stayed bridges traveled by high-speed trains, Finite Elements in Analysis and Design, 40 (2004) 341 – 359.
- 13. J. Li, M. Su, L. Fan, Vibration control of railway bridges under high-speed trains using multiple tuned mass dampers, ASCE Journal of Bridge Engineering, 10(3) (2005) 312 – 320.
- 14. H. N. Li, X. L. Ni, Optimization of non-uniformly distributed multiple tuned mass damper, Journal of Sound and Vibration, 308 (2007) 80 – 97.
- 15. D. J. Thompson, A continuous damped vibration absorber to reduce broad-band wave propagation in beams, Journal of Sound and Vibration, 311 (2008) 824 – 842.
- 16. W. Łatas, P. Martynowicz, Modeling of vibration of wind turbine tower-nacelle system with dynamic absorber, Modelowanie Inżynierskie, 44(13) (2012) 187 – 198.
- 17. W. Łatas, P. Martynowicz, J. Snamina, Dynamic similarity of wind turbine’s tower-nacelle system and its scaled model, Solid State Phenomena, 208 (2014) 29 – 39.
- 18. J. Dayou, M. J. Brennan, Global control of structural vibration using multiple-tuned tunable vibration neutralizers, Journal of Sound and Vibration, 258(2) (2002) 345 – 357.
- 19. R. L. Harne, On the linear elastic, isotropic modeling of poroelastic distributed vibration absorbers at low frequencies, Journal of Sound and Vibration, 332 (2013) 3646 – 3654.
- 20. H. Osman, M. E. Johnson, C .R. Fuller, P. Marcotte, Interior noise reduction of composite cylinders using distributed vibration absorbers, Proceedings of the Seventh AIAA/CEAS Aeroacoustics Conference, Maastricht, The Netherlands, 2 (2001) 2001 – 2230.
- 21. J. Spencer, S. Nagarajaiah, State of the art of structural control, Journal of Structural Engineering, July (2003) 845 – 856.
- 22. W. Łatas, Multiple tuned tunable translational-rotational vibration absorbers in beam, Vibrations in Physical Systems, 26 (2014) 145 – 152.
- 23. W. Łatas, Optimal positions of the tunable translational-rotational dynamic absorbers in global vibration control problems in beams, Journal of Theoretical and Applied Mechanics, 53(2) (2014) 467 – 476.
- 24. W. Łatas, Optimal tuning of the tunable translational-rotational dynamic absorbers in global vibration control problems in beams, Journal of Civil Engineering, Architecture and Environment, 61(2) (2014) 107 – 118.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c49bfba-6e53-41da-8caf-963093d95588