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Abstract

The paper deals with the application of the comtirsudynamic absorbers in vibration reduction proislén
beams. The Euler-Bernoulli beam of variable crasgisn is subjected to the concentrated and diggib
harmonic excitation forces. The beam is equippeth &isystem of the continuous vibration absorbEng
problem of the forced vibration is solved employihg Galerkin’'s method and Lagrange’'s equationthef
second kind. Performing time-Laplace transformatioe amplitudes of displacement may be writtenhiax t
frequency domain, similarly the time-averaged kinenergy of any part of the beam. The resultsoofies
local and global vibration control optimization ptems concerning the placement and parameterseof th
continuous vibration absorbers are presented.
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1. Introduction

The main aim of dynamic vibration absorbers (DVApauned mass dampers (TMD),
properly located and tuned to the excitation fdrequency, is the reduction of structure
vibrations in the point of attachment [1,2]. Theoldem of vibration analysis and the
proper selection of absorbers parameters was ige#sti in several theoretical
studies [3-10].

Certain general rules concerning the proper lonatib dynamic absorbers can be
given [7,18]. In continuous systems, such as beamscase of its loading by
a concentrated force the best place for the dynamsorber attachment is usually the
point of the applied load. The discrete absorbéfisiency depends significantly on the
accuracy of their placement since even a slightadiewm from the optimal position
significantly decreases their effectiveness. Figdhre optimal positions of absorbers for
a distributed force applied is more complicatedheesally for global problems of
vibration reductions. Systems of dynamic absorbdersed — in dependence of the
excitation force bandwidth — into one [11-14] otoira few frequencies [3-5] are applied
in several cases.

Continuous absorbers, in comparison with discresmebers, are efficient for various
locations of excitation forces and at the apprdprianing can be efficient within a wide
frequency range. Continuous absorbers are espesiatible for damping the running
structural waves in long one-dimensional continusystems, such as beams [15]. This
type dynamic absorbers are applied also for redueibrations of plates and shells at
low frequencies [19] as well as for problems radate sound emission [20].



246

The computational algorithm, allowing to determitiee amplitude-frequency
characteristics of displacement and energy forBhker-Bernoulli beam of a variable
cross-section subjected to harmonic excitationsasicentrated and distributed forces,
with the system of continuous dynamic absorber@chtd, is presented in the hereby
paper. The presented examples of numerical calootatoncern the application of the
continuous absorbers in global vibration reducposblems in beams.

2. Theoretical model

The system considered in the paper is shown in Eig.-he beam of lengthand with
any given boundary conditions is given, its phylsisad geometrical parameters are
functions of the position: mass dengi{x), cross-section are®x), geometrical moment
of inertial(X), Young modulu€(x), viscous damping coefficiea(x) (the Voigt-Kelvin
rheological model was assumed). The beam subjdctdthrmonic excitations (both
concentrated and distributed) is equipped with $gstem of continuous dynamic
vibration absorbers.

(M (x), Kx), ¢ (x)

|§|| HEEEREN ||E| lpl(t) gx.0 lpp(t)
I 5 L % L L L L L m’mﬂ[ﬂ

J__%.

x
2

%ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁrﬁﬁﬁ%ﬂ

(M, (x), k(x), c.(x))

X5

Figure 1. Beam with the systemg@€tontinuous dynamic vibration absorbers

When the Euler-Bernoulli beam model is taken irntooaint, the expressions for the
kinetic and potential energy and for the dissipapotential take the following forms:
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The beam deflection is described by the functiceales
n
wxt) =g ()¢ (¥) 4
i=1

in which eigenfunctions of the beam of a constaoss-section (for boundary conditions
of the given problem), without the attached dynamatisorbers, are assumed as basic
functions ¢i(x). Time functionsqi(t) tare generalized coordinates which should be
determined.

After the substitution of series (4) into equatigii3-(3) the expressions for the
kinetic and potential energy and for the dissipapotential take the following forms:
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Numerical factorsn;, kij, bj occurring in the above shown expressions, areéefas
follows:

|
m; = [ DA, ()¢, (N dx (8)
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For the arbitrary beam load applidd(x,t) the generalized force for thith
generalized coordinate equals to:

H,(® = [ H oD 6, (9 (11)

Using the Lagrange's equations of second kind iffereintial equations system for
the generalized coordinatggt) is obtained:
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iquj+ithj+inqj:Hi¢)’ i=1l.n (12)

Applying the time Laplace transform (with initiabreditions being zero) to system
(12) the linear system of algebraic equations iiokd, from which it is possible to
obtain transformgi(s) of functionsg;(t):

S meQ @+ hsQ@+> KQ9=H 6 i=1.n 13)
j=1 j=1 j=
The transform of the beam deflection line is gibgrthe series
W(x9)=3 Q94,9 (14)
i=1
The load of the considered beam (Fig. 1) consiftp ooncentrated forceB(t)

applied in points of coordinates , of a distributed load(x, t) and ofr distributed loads
f(x, t) originated from continuous dynamic absorbers:

H(xt) =Zp:Pk(t)5(X—XE)+ g(x,t)+2 f (x.1) (15)
k=1 k=1
Thus, the generalized fore#(t) for the generalized coordinaigt) equals to:
H; (1) :;Pk (t) ¢ (x) + j g(x,t)¢i(x>dx+;£ fi (%) 4, (Yol (16)
i=1l..n

The Laplace transform of the generalized forcenvismgby the expression:

P | el
— 0
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i=1l.n
wherePy(s), g(x, s), andfi(x, s) are the Laplace transforms of functioR&(t), g(x, t),
fi(X, t).
The Laplace transform of the continuous beam loadimated from thek-th

continuous dynamic absorber (with zero initial citinds) equals tb

(6 (¥s+k (0)m (¥s > Q,(9¢, (%) (18)
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where by:my(x), k(X), c(X) the linear densities of the mass, stiffness aachpging
coefficients (describing the continuous dynamicoaber) are marked, respectively.
When expression (18) is inserted into (17), afearmangements the system of linear
algebraic equations is obtained from system (13)e TransformsQi(s) can be
determined from the system:

i(msz +hstk + 2 (s)] Q9= RIA () +G (9 .
i=1l..n

where the following notations are introduced:

| 2
g o G9sHhk Im(9s®
e 'c[m((X)sz+ck(X)s+kk(X) %108, (3 (20)

G(9) = [ a(x9)¢,(Ydx

The solution of equations system (19) provides-domain — after using equation
(14) — the transform of the beam deflection lineddbitrary boundary conditions. When
considering the steady state, substitutig jo (] =J—_1)allows to determine the

amplitude of the beam deflection line as the functiof frequency. Analogous
amplitude-frequency characteristics can be obtaioethe bending moment, shear force
and the time-averaged kinetic energy of the beam.

The developed computational algorithm allows toedeine the mentioned above
amplitude-frequency characteristics for the beanscdleed by arbitrary functions
(within the geometrical model applicability)(x), A(X), 1(X), E(X), a(X).

3. Numerical calculations —tunable continuous vibration absor ber

A cantilever steel beam, with rectangular crossisecexcited by uniform distributed
harmonic forceg(x, t) = gosinwt distributed along the segme{wo.?. ,O.6I> is considered,
with the continuous absorber attached (Fig. 2). fdrameters describing the system are
collected in Table 1 (the internal damping in tleaim is neglected).

Table 1. Parameters of the beam and absorber

Quantity Symbo| Unit | Value
Mass density 4 kg/m? | 7800
Length I m 1.0
Young’s modulus E N/m? | 2.1e11
Cross-section width b m 0.05
Cross section height h m 0.005

Total mass of the absorber; - kg 0.098
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The first four natural frequencies of the beam withthe absorber attached are equal
to: fi = 4.19 Hzf, = 26.26 Hzf3 = 73.54 Hzf, = 144.11 Hz

It is assumed that the linear densities of the ddesomass, stiffness and damping
coefficients are constant along its segmen{k) = const,k(x) = const,c(x) = const, the
total mass of the continuous absorber is equal%odb the total beam mass, which
means 0.098 kg.

Depending on whether the local optimization problem considered (e.g.
minimization of the vibration amplitude of the sgkd point of the beam) or the global
one (e.g. minimization of the time-averaged kineiergy of the selected part of the
beam), the optimal solutions (i.e. width, locatammd physical absorber parameters) may
be completely different. The solutions also dependvhether the problem of tuning the
absorber around a selected frequency is considpess$ive method) or the problem of
tuning in real-time to the excitation frequencyarwider frequency band (semi-active
method).

Figure 2. Beam with the attached dynamic continudiiation absorber

For example, for the problem of passive minimizatad the vibration amplitude of
the free end of the beam shown in Fig. 2, in thedbadth around the first natural
frequencyf; = 4.19 Hz, the best result is obtained for therdie damper placed at the
end of the beam. The calculated for this case thémal stiffness and damping
coefficients of the damper an€opr= 47.70 N/m Copr= 1.08 Ns/m.

Due to the first mode shape the problem of passmeimization of the time-
averaged kinetic energy of the beam around thé¢ fiasural frequency has a similar
solution: the discrete damper placed at the enttiebeam with the optimal parameters
almost the same like given earlier.

The width and location of the optimal absorber ibration reduction problems
considered in a wider frequency band can be diftedepending on the criterion taken
(local or global). In the case of the absorber duie real-time to the excitation
frequency (semi-active method), the best solutmmttie problem of minimization the
vibration amplitude of the beam free end may alstuothe discrete absorber placed at
the end of the beam. In this case, however, a msonant frequency [18, 23-24] may
appear with a node at the beam end, so such locafia discrete damper may be
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inadequate in the energy minimization problems. Vibeation suppression efficiency
may be improved by using several discrete tramslatiand rotational absorbers [22-24].

In further calculations the continuous absorbeg.(E) is assumed to be tuned so that
it is resonant at each frequency, without energgidating appliances(k) = 0).

The aim of calculations is to find the optimal widind placement of the continuous
vibration absorber in a given frequency range, amasure of vibration is used the time
-averaged kinetic energy of the whole beam.

The results of the numerical calculations are preskin Fig. 3 and Fig. 4.

For comparison it is first shown in Fig. 3 the cddded time-averaged kinetic energy
for the case with the single discrete absorbergulan different positions on the beam.
The numbers in the figure represent the distaraa the support (in meters).

Without absorber /

Energy [logarithmic scale]

Frequency [Hz]

Figure 3. Time-averaged kinetic energy of the beat the one discrete absorber
attached in different positions — the absorbeun®tl to be resonant at each frequency

It is visible that the vibration suppression efficty of the discrete absorber (tuned to
the excitation force frequency) depends largelyrugiee absorber position. Due to the
appearing a new resonant frequency of the structereposed of the beam with
absorber, there is no position of the absorber@ppate in the whole frequency band
considered. Additionally the discrete absorbereis/\sensitive to inaccurate location and
tuning.

In Fig. 4 is shown the time-averaged kinetic enefgythe case with the single
continuous absorber of different width and plagedifferent positions on the beam. The
numbers in the figure represent the values @idx. (Fig. 2).
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Figure 4. Time-averaged kinetic energy of the beatin the one continuous absorber
attached in different positions and with differeegment widths — the absorber is tuned
to be resonant at each frequency

It results from the diagrams in Fig. 4 that the tomrous absorbers may have the
suppression efficiency many orders of magnitudéérighan the discrete absorber.

It is possible to find the width and position oétbontinuous absorber segment which
are considered optimal in the entire given bandwitiecause there doesn’'t appear any
new resonant frequency in the system.

The continuous absorber is also sensitive to imatedocation and tuning, but even
when placed not exactly at the optimal locationaih posses the vibration suppression
efficiency much more higher than the discrete atosior

For another type of loading optimization can givifedent results, as for the other
frequency bands. A further improvement of the Milborareduction would be achievable,
when the real time change not only of stiffness ddab of damping was possible. De-
tuning the absorbers, both discrete and continuzarsalso be beneficial [18].

4, Conclusions

Continuous dynamic absorbers can be efficient isesawhen the points of loading
attachment is not accurately determined as weh aases of distributed loads. They can
be applied in places where placements of one ewaabsorbers of significant masses is
technically impossible. By the appropriate tuningeyt can be efficient within
a broad frequency band.

The computational model presented in the herebympapn be used in local and
global problems of the optimization the continualyamic absorbers locations and
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parameters in beam¥he numerical algorithm created for calculatiorthe continuous
absorbers may also be applied to calculation ofitberete absorbers. It can be obtained
by taking the very narrow segment over which thetiooous absorber is distributed or
by describing the densities of the mass, stiffreesd damping coefficients using the
o-Dirac distribution. The advantage of this approacthat the number of unknowns in
the solved systems of equations does not depenitheomumber of discrete dampers
used.

The computational model of the continuous dynantisogber, presented in this
study, can be adjusted to vibration reduction protd in more complex one-dimensional
systems such as frames or curvilinear beams. Itbeaalso expanded to problems of
vibration reductions in plates or shells.
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