PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel forward problem solver based on meshfree method for electrical impedance tomography

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nowa bezoczkowa metoda tomografii impedancji elektrycznej
Języki publikacji
EN
Abstrakty
EN
In this paper the meshfree method is developed to solve the forward problem for electrical impedance tomography. Differing from finite element method and finite volume method, there is no mesh generation in meshfree method, which is easier to realize and more propitious to be developed as an adaptive procedures for image reconstruction. Numerical simulation results are presented and compared with the results of analytical solution. It is observed that the obtained results are consistent with the results of analytical solution.
PL
W artykule zaproponowano nowa metodę tomograficznej analizy impedancji w której nie generuje się oczek jak na przykład w metodzie elementów skończonych. Dzięki temu uzyskuje się łatwiejsza analizę, w tym także metodami adaptacyjnymi.
Rocznik
Strony
234--237
Opis fizyczny
Bibliogr. 13 poz., schem., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University. No. 174, Shazhengjie, Shapingba District, Chongqing 400044, China
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University. No. 174, Shazhengjie, Shapingba District, Chongqing 400044, China
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University. No. 174, Shazhengjie, Shapingba District, Chongqing 400044, China
autor
  • State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University. No. 174, Shazhengjie, Shapingba District, Chongqing 400044, China
Bibliografia
  • [1] de Munck J C, Faes T J C, Heethaar R M, The boundary element method in the forward and inverse problem of electrical impedance tomography, IEEE Trans Bio-Med Eng., 47(2000), 792-800.
  • [2] Dong G Y, Zou J, Bayford R H, Ma X S, Gao S K, Yan W L, Ge M L, The comparison between FVM and FEM for EIT forward problem, IEEE TRANSACTIONS ON MAGNETICS, 41(2005), 1468-1471.
  • [3] Lionheart W R B, EIT reconstruction algorithms: pitfalls, challenges and recent developments, Physiol. Meas., 25(2004), 125-142.
  • [4] Molinari M, High fidelity imaging in electrical impedance tomography, PhD thesis, (2003), University of Southampton.
  • [5] Guimares F G, Saldanha R R, Mesquita R C, Lowther D A, Ramirez J A, A meshless method for electromagnetic field computation based on the multiquadric technique, IEEE TRANSACTIONS ON MAGNETICS, 43(2007), 1281-1284.
  • [6] Viana S A, Mesquita R C, Moving least square reproducing kernel method for electromagnetic field computation, IEEE TRANSACTIONS ON MAGNETICS, 35(1999), 1372-1375.
  • [7] Viana S A, Rodger D, Lai H C, Meshless local Petrov–Galerkin method with radial basis functions applied to electromagnetics, IEE Proc.-Sci. Meas. Technol., 151(2004), 449-451.
  • [8] Zhang Y, Shao K R, Guo Y G, Zhu J G, D. Xie X, Lavers J D, An improved multiquadric collocation method for 3-D electromagnetic problems, IEEE TRANSACTIONS ON MAGNETICS, 43(2007), 1509-1512.
  • [9] Liu G R, Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press, New York 2003.
  • [10] Cutrupi V, Ferraioli F, Formisano A, Martone R, An approach to the electrical resistance tomography based on meshless methods, IEEE TRANSACTIONS ON MAGNETICS, 43(2007), 1717-1720.
  • [11] Powell M J D, The theory of radial basis function approximation in 1990, Advances in Numerical Analysis, Oxford University Press, Oxford 1992.
  • [12] Schaback R, Approximation of polynomials by radial basis functions Wavelets, Images and Surface Fitting, A K Peters Ltd., Wellesley, MA 1994.
  • [13] Wendland H, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theor., 93(1998), 258-272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c427c3c-f646-4623-95b0-26338ecfcf37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.