PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of ureolytic bacteria on compressibility of the soils with variable gradation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to present the effect of treatment with ureolytic bacteria (Sporosarcina pasteurii) on the compressibility parameters of mineral and anthropogenic soils. In the presence of the urease enzyme, secreted by a strain of Sporosarcina pasteurii bacteria, urea hydrolysis occurs, allowing CaCO3 to be precipitated. The literature suggests applying the Microbially Induced Calcite Precipitation (MICP) method to non-cohesive soils. In order to determine whether the biomineralization process occurs in other soil types, cohesive and anthropogenic soils were tested in the laboratory. Compressibility tests were carried out in the laboratory on MICP-treated and untreated soils as reference samples. The process of biocementation in the soil is made possible by the introduction of bacteria into the soil and subsequent activation by a cementation solution (consisting of urea and calcium ions Ca2+). This paper presents the methodology for introducing bacteria into the soil, as well as the effect of the biomineralization process on the deformation parameters of the tested materials.
Rocznik
Strony
131--139
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
  • PhD; Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45E,15-351 Bialystok, Poland
  • PhD; Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45E,15-351 Bialystok, Poland
  • DSc; Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska 45E,15-351 Bialystok, Poland
Bibliografia
  • [1] Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67.
  • [2] Hammes, F., Boon, N., de Villiers, J., Verstraete, W., & Siciliano, S. D. (2003). Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and environmental microbiology, 69(8), 4901–4909.
  • [3] Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1–3), 9–21.
  • [4] Phillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review, Biofouling, 29(6), 715–733.
  • [5] Mujah, D., Shahin, M. A., & Cheng, L. (2016). State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, Geomicrobiology Journal, 34(6), 524–537.
  • [6] Rajasekar, A., Wilkinson, S., & Moy, C. K. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6, 100096.
  • [7] Zha, F., Wang, H., Kang, B., Liu, C., Xu, L., & Tan, X. (2021). Improving the strength and leaching characteristics of Pb-contaminated silt through MICP. Crystals, 11(11), 1303.
  • [8] Li, X., Wang, Y., Tang, J., & Li, K. (2022). Removal behavior of heavy metals from aqueous solutions via microbially ınduced carbonate precipitation driven by acclimatized Sporosarcina pasteurii. Applied Sciences, 12(19), 9958.
  • [9] Dhami N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314.
  • [10] Anbu, P., Kang, C., Shin, Y., & So, J. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(1), 1–26.
  • [11] Seifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591–2602.
  • [12] DeJong, J. T., Fritzges, M.B., & Nüsslein, K. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering, 132, 1381–1392.
  • [13] Cheng L., Cord-Ruwisch R., & Shahin M. A. (2013). Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 50(1), 81–90.
  • [14] Wang, Y., Soga, K., DeJong, J.T., & Kabla, A.J. (2021). Effects of bacterial density on growth rate and characteristics of Microbial-Induced CaCO3 precipitates: particle-scale experimental study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036.
  • [15] De Muynck, W., De Belie, N., & Verstraete, W., (2010). Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 36(2), 118–136.
  • [16] Choi, S., Wang, K., Wen, Z., & Chu, J. (2017). Mortar crack repair using microbial induced calcite precipitation method. Cement and Concrete Composites, 83, 209–221.
  • [17] Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus phaericus. Heliyon, 8(7), e09879.
  • [18] Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571.
  • [19] Erdmann, N., de Payrebrune, K. M., Ulber, R., & Strieth, D. (2022). Optimizing compressive strength of sand treated with MICP using response surface methodology. SN Applied Sciences, 4, 282.
  • [20] Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417–423.
  • [21] Ivanov, V., & Chu, J. (2008). Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Reviews in Environmental Science and Bio/Technology, 7, 139–153.
  • [22] DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Biomediated soil improvement. Ecological Engineering, 36(2), 197–210.
  • [23] van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering, 36(2), 168–175.
  • [24] Harkes, M. P., van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112–117.
  • [25] Jiang, N., & Soga, K. (2017). The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Geotechnique, 67, 42–55.
  • [26] Al Qabany, A., & Soga, K. (2013). Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 63(4), 331–339.
  • [27] Cheng L., & Shahin M. A. (2016). Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 53(9), 1376–1385.
  • [28] Rowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 89, 49–55.
  • [29] Ng W. S., Lee M. L., & Hii S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 6(2), 723–729.
  • [30] Feng, K., & Montoya, B. M. (2016). Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015057.
  • [31] Nemati, M., Greene, E., & Voordouw, G. (2005). Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 40(2), 925–933.
  • [32] Martinez, B. C., DeJong, J. T., Ginn, T. R., Montoya, B. M., Barkouki, T. H., Hunt, C., Tanyu, B., & Major, D. (2013). Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 139(4), 587–598.
  • [33] Zhao, Q., Li, L., Li, C., Li, M., Amini, F., & Zhang, H. (2014). Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 26(12), 04014094.
  • [34] Mahawish, A., Bouazza, A., & Gates, W. P. (2019). Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. Journal of Geotechnical and Geoenvironmental Engineering, 145(8), 04019033.
  • [35] Canakci, H., Sidik, W., & Halil Kilic, I. (2015). Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils and Foundations, 55(5), 1211–1221.
  • [36] Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian, E. (2015). Mechanical behaviour of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015066.
  • [37] Harran, R., Terzis, D., & Laloui, L. (2022). Characterizing the deformation evolution with stress and time of biocemented sands. Journal of Geotechnical and Geoenvironmental Engineering, 148(10), 04022074.
  • [38] Montoya, B. M., DeJong, J., & Boulanger, R. (2013). Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 63(4), 302–312.
  • [39] Sharma, M., & Satyam, N. (2021). Strength and durability of biocemented sands: Wetting-drying cycles, ageing effects, and liquefaction resistance. Geoderma, 402, 115359.
  • [40] Wasil, M. (2020). Effect of bentonite addition on the properties of fly ash as a material for landfill sealing layers. Applied Sciences, 10(4), 1488.
  • [41] Zabielska-Adamska, K. (2020). Characteristics of compacted fly ash as a transitional soil. Materials, 13(6), 1387.
  • [42] Jiang, N., Tang, C., Yin, L., Xie, Y., & Shi, B. (2019). Applicability of Microbial Calcification Method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 31(11), 04019250.
  • [43] Mitchell, J. K., & Santamarina, J. C. (2005). Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.
  • [44] Martin, D., Dodds, K., Ngwenya, B. T., Butler, I. B., & Elphick, S. C. (2012). Inhibition of Sporosarcina pasteurii under anoxic conditions: Implications for subsurface carbonate precipitation and remediation via ureolysis. Environmental Science & Technology, 46(15), 8351–8355.
  • [45] Yasuhara, H., Neupane, D., Hayashi, K., & Okamura, M. (2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations, 52(3), 539–549.
  • [46] Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of biotreated coarse sand specimens. Scientific Reports, 11(1), 6161.
  • [47] Zhao, Y., Xiao, Z., Lv, J., Shen, W., & Xu, R. (2019) A novel approach to enhance the urease activity of Sporosarcina pasteurii and its application on microbial-induced calcium carbonate precipitation for sand, Geomicrobiology Journal, 36(9), 819–825.
  • [48] Zamani, A., & Montoya, B. M. (2017). Shearing and hydraulic behavior of MICP treated Silty Sand. Geotechnical Frontiers 2017, 290–299.
  • [49] Xu, H., Zheng, H., Wang, J., Ding, X., & Chen, P. (2019). Laboratory method of microbial induced solidification/stabilization for municipal solid waste incineration fly ash. MethodsX, 6, 1036–1043.
  • [50] Al Qabany, A., Soga, K. and Santamarina, C. (2012). Factors affecting efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001.
  • [51] Wasil, M. (2022). Compressibility of fly ash and fly ash-bentonite mixtures. The Baltic Journal of Road and Bridge Engineering, 17(3), 21–43.
  • [52] Zabielska-Adamska, K. (2018). One-dimensional compression and swelling of compacted fly ash. Geotechnical Research, 5(2), 96–105
  • [53] Cardoso, R., Pedreira, R., Duarte, S. O., & Monteiro, G. A. (2020). About calcium carbonate precipitation on sand biocementation. Engineering Geology, 271, 105612.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c410469-391d-4caf-bd0f-3df63bd5ab49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.