Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bark beetle outbreaks and tree mortality patterns should be better understood to control outbreak impacts. We investigated landscape-level patterns of Norway spruce mortality caused by Ips typographus outbreaks across three periods from 1999–2012 in Tatra National Park (Poland) using high-resolution aerial orthophotos and satellite imagery. Shifts in tree mortality related to elevation, slope, and solar equinox radiation were analyzed with ANOVAs (Tukey's HSD tests). Boosted regression trees were employed to assess the forecasting effectiveness of these variables related to mortality period. Spruce mortality severity increased significantly across time in both managed and unmanaged forests. Management activities did not effectively reduce spruce mortality severity. Mortality severity increased significantly at higher elevations over time, while slope and radiation trends varied. Elevation and radiation were the best forecasters of mortality period, exhibiting moderate predictive ability. Beetle-induced spruce mortality increased significantly in Tatra National Park from 1999–2012, particularly at high elevations. Management strategies aimed at minimizing spruce mortality have been ineffective.
Czasopismo
Rocznik
Tom
Strony
24--37
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab., wykr.
Twórcy
autor
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210 USA
- Department of Forest Biodiversity, Institute of Forest Ecology and Silviculture, University of Agriculture, 29 Listopada av. 46, 31-425 Krakow, Poland
autor
- Tatra National Park, Kuznice 1, 34-500 Zakopane, Poland
autor
- Department of Environmental Management, Western State Colorado University, Gunnison, CO 81231 USA
autor
- Tatra National Park, Kuznice 1, 34-500 Zakopane, Poland
autor
- Department of Forest Biodiversity, Institute of Forest Ecology and Silviculture, University of Agriculture, 29 Listopada av. 46, 31-425 Krakow, Poland
Bibliografia
- [1] Catford J. A., Vesk P. A., White M. D., Wintle B. A. 2011 — Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics — Divers. Distrib. 17: 1099–1110.
- [2] Central National Geodetic and Cartographic Inventory (CODGiK) 2012 — http://www.codgik.gov.pl. Accessed 30 March 2015.
- [3] Christiansen E. 1989 — Bark beetles and air pollution — Medd. NISK 42: 101–107.
- [4] Christiansen E., Bakke A. 1988 — The spruce bark beetle of Eurasia (In: Dynamics of forest insect populations—patterns causes, implications, Ed: A. A. Berryman) — Plenum Press, New York, pp. 479–503.
- [5] Christiansen E., Huse K. J. 1980 — Infestation ability of Ips typographus in Norway spruce, in relation to butt rot, tree vitality and increment — Medd. NISK 35: 473–482.
- [6] Dutilleul P., Nef L., Frigon D. 2000 — Assessment of site characteristics as predictors of the vulnerability of Norway spruce (Picea abies Karst.) stands to attack by Ips typographus L. (Col., Scolytidae) — J. Appl. Entomol. 124: 1–5.
- [7] Elith J., Leathwick J. 2014 — Boosted Regression Trees for ecological modelling — http://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf. Accessed 10 May 2015.
- [8] Elith J., Leathwick J. R., Hastie T. 2008 — A working guide to boosted regression trees — J. Anim. Ecol. 77: 802–13.
- [9] Grodzki W., Jakuš R., Gazda M. 2003 — Patterns of bark beetle occurrence in Norway spruce stands of national parks in Tatra Mts. in Poland and Slovakia — J. Pest Sci. 76: 78–82.
- [10] Grodzki W., Jakuš R., Lajzova E., Sitkova Z., Maczka T., Skvarenina J. 2006 — Effects of intensive versus no management strategies during an outbreak of the bark beetle Ips typographus (L.) (Col.: Curculionidae, Scolytinae) in the Tatra Mts. in Poland and Slovakia — Ann. For. Sci. 63: 55–61.
- [11] Grodzki W., McManus M., Knízek M., Meshkova V., Mihalciuc V., Novotny J., Turčáni M., Slobodyan Y. 2004 — Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress — Environ. Pollut. 130: 73–83.
- [12] Hanewinkel M., Breidenbach J., Neeff T., Kublin E. 2008 — Seventy-seven years of natural disturbances in a mountain forest area-the influence of storm, snow, and insect damage analysed with a long-term time series — Can. J. For. Res. 38: 2249–2261.
- [13] Hess M. 1996 — Klimat [Climate] (In: Przyroda Tatrzańskiego Parku Narodowego, Ed: Z. Mirek) [Nature of Tatra National Park] — Tatrzański Park Narodowy, Kraków-Zakopane, pp. 53–68 (in Polish, English summary).
- [14] Hilszczański J., Janiszewski W., Negron J., Munson A.S. 2006 — Stand characteristics and Ips typographus (L.) (Col., Curculionidae, Scolytinae) infestation during outbreak in northeastern Poland — Folia For. Pol. 48: 53–64.
- [15] Jakuš R., Edwards-Jonášová M., Cudlín P., Blaženec M., Ježík M., Havlíček F., Moravec I. 2011a — Characteristics of Norway spruce trees (Piceaabies) surviving a spruce bark beetle (Ips typographus L.) outbreak — Trees, 25: 965–973.
- [16] Jakuš R., Grodzki W., Jezik M., Jachym M. 2003 — Definition of spatial patterns of bark beetle Ips typographus (L.) outbreak spreading in Tatra Mountains (Central Europe), using GIS (In: Proceedings: ecology, survey and management of forest insects, Eds: M. L. McManus, A. M. Liebhold) — USDA Forest Service, Newtown Square, PA, pp. 25–33.
- [17] Jakuš R., Zajíčkova L., Cudlín P., Blaženec M., Turčani M., Ježík M., Lieutier F., Schlyter F. 2011b — Landscape-scale Ips typographus attack dynamics: from monitoring plots to GIS-based disturbance models — iForest — Biogeosciences, For 4: 256–261.
- [18] Jönsson A. M., Schroeder L. M., Lagergren F., Anderbrant O., Smith B. 2012 — Guess the impact of Ips typographus — An ecosystem modelling approach for simulating spruce bark beetle outbreaks — Agric. For. Meteorol. 166–167: 188–200.
- [19] Kärvemo S. 2015 — Outbreak dynamics of the spruce bark beetle Ips typographus in time and space — Dissertation, Swedish University of Agricultural Sciences.
- [20] Kautz M., Schopf R., Ohser J. 2013 — The “sun-effect”: microclimatic alterations predispose forest edges to bark beetle infestations — Eur. J. For. Res. 132: 453–465.
- [21] Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M. et al. 2010 — Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems — For. Ecol. Manage. 259: 698–709.
- [22] Mezei P., Grodzki W., Blaženec M., Jakuš R. 2014a — Factors influencing the wind—bark beetles' disturbance system in the course of an Ips typographus outbreak in the Tatra Mountains — For. Ecol. Manage. 312: 67–77.
- [23] Mezei P., Grodzki W., Blaženec M., Škvarenina J., Brandýsová V., Jakuš R. 2014b — Host and site factors affecting tree mortality caused by the spruce bark beetle (Ips typographus) in mountainous conditions — For. Ecol. Manage. 331: 196–207.
- [24] Mezei P., Jakuš R., Blaženec M., Belánová S., Šmídt J. 2011 — Population dynamics of spruce bark beetle in a nature reserve in relation to stand edges conditions — Folia Oecologica, 38: 73–79.
- [25] Mezei P., Jakuš R., Blaženec M., Belánová S., Šmídt J. 2012 — The relationship between potential solar radiation and spruce bark beetle catches in pheromone traps — Ann. For. Res. 55: 1–10.
- [26] Mirek Z., Piękoś-Mirkowa H. 1992 — Flora and vegetation of the Polish Tatra Mountains — Mountain Research and Development, 12: 147–173.
- [27] Nelson K. N., Rocca M. E., Diskin M., Aoki C. F., Romme W. H. 2014 — Predictors of bark beetle activity and scale-dependent spatial heterogeneity change during the course of an outbreak in a subalpine forest — Landsc. Ecol. 29: 97–109.
- [28] Netherer S., Nopp-Mayr U. 2005 — Predisposition assessment systems (PAS) as supportive tools in forest management-rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification — For. Ecol. Manage. 207: 99–107.
- [29] Nikolov C., Konôpka B., Kajba M. 2014 — Post-disaster forest management and bark beetle outbreak in Tatra National Park, Slovakia — Mt. Res. Dev. 34: 326–335.
- [30] Powers J. S., Sollins P., Harmon M. E., Jones J. A. 1999 — Plant-pest interactions in time and space: A Douglas-fir bark beetle outbreak as a case study — Landsc. Ecol. 14: 105–120.
- [31] R Development Core Team 2015 — R: A language and environment for statistical computing — R Foundation for Statistical Computing. http://www.R-project.org.
- [32] Raffa K. F., Aukema B. H., Bentz B. J., Carroll A. L., Hicke J., Turner M. G., Romme W. H. 2008 — Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions — Bioscience, 58: 501–517.
- [33] Ridgeway G. 2007 — The gbm package — Generalized boosted regression models. (Documentation on the R Package ‘gbm’, version 1.6–3). http://www.mirrorservice.org/sites/lib.stat.cmu.edu/R/CRAN/doc/packages/gbm.pdf. Accessed 15 May 2015.
- [34] SAS Institute 1989–2015 — JMP, Version 11.0. Cary, NC.
- [35] Schelhaas M., Nabuurs G., Schuck A. 2003 — Natural disturbances in the European forests in the 19th and 20th centuries — Glob. Chang. Biol. 9: 1620–1633.
- [36] Schroeder L. M. 2001 — Tree mortality by the bark beetle Ips typographus (L.) in storm-disturbed stands — Integr. Pest. Manag. Rev. 6: 169–175.
- [37] Schroeder L. M., Lindelöw A. 2002 — Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees — Agric. For. Entomol. 4: 47–56.
- [38] Seidl R., Baier P., Rammer W., Schopf A., Lexer M. J. 2007 — Modelling tree mortality by bark beetle infestation in Norway spruce forests — Ecol. Modell. 206: 383–399.
- [39] Sproull G. J., Adamus M., Bukowski M., Krzyżanowski T., Szewczyk J., Statwick J., Szwagrzyk J. 2015 — Tree and stand-level patterns and predictors of Norway spruce mortality caused by bark beetle infestation in the Tatra Mountains — For. Ecol. Manage. 354: 261–271.
- [40] Vorster A. 2014 — Relating severity of a mountain pine beetle outbreak to forest management history — MS Thesis, Colorado State University.
- [41] Walter J. A., Platt R. V. 2013 — Multi-temporal analysis reveals that predictors of mountain pine beetle infestation change during outbreak cycles — For. Ecol. Manage. 302: 308–318.
- [42] Wermelinger B. 2004 — Ecology and management of the spruce bark beetle Ips typographus—a review of recent research — For. Ecol. Manage. 202: 67–82.
- [43] Whitehead R. J., Safranyik L., Russo G., Shore T. L., Carol A. L. 2003 — Silviculture to reduce landscape and stand susceptibility to the mountain pine beetle (In: Mountain Pine Beetle Symposium: Challenges and Solutions. Canadian Forest Service, Eds: T. L. Shore, J. E. Brooks, J. E. Stone) — British Columbia, Canada, pp. 233–244.
- [44] Wichmann L., Ravn H. P. 2001 — The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS — For. Ecol. Manage. 148: 31–39.
- [45] Zwijacz-Kozica T. 2013 — Ochrona przyrody [Nature Conservation] (In: Dolina Suchej Wody w Tatrach. Środowisko i jego współczesne przemiany) [Sucha Valley Water in the Tatra Mountains. Environment and its modern transformation] — IGiPZ PAN, pp. 137–145 (in Polish, English summary).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c3db4a6-4a05-4416-acbd-bd12522b5a03