PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of Saharan dust on the copper uptake by Lemna minor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the aim was to model the toxic effect of copper (Cu) and analyse the removal of Cu in aqueous Saharan and non-Saharan mediums by Lemna minor. Two separate test groups were formed: with Saharan dust (S) and without Saharan dust (WS). These test groups were exposed to 3 different Cu concentrations (0.05, 0.50 and 5.00 ppm). Time, concentration, and group-dependent removal efficiencies were compared using the non-parametric Mann-Whitney U test and statistically significant differences were found. The optimum removal values were tested at the highest concentration 79.6% in the S medium and observed on the 4th day for all test groups. The lowest removal value (16%) was observed at 0.50 ppm on the 1st day in the WS medium. When the S medium and WS medium were compared, in all test groups Cu was removed more successfully in the S medium than the WS medium contaminated by Cu in 3 different concentrations of (0.05 ppm, 0.50 ppm, 5.00 ppm). The regression analysis was also tested for all prediction models. Different models were performed and it was found that cubic models show the highest predicted values (R2). The R2 values of the estimation models were found to be at the interval of 0.939–0.991 in the WS medium and 0.995–1.000 in the S medium.
Słowa kluczowe
Rocznik
Strony
84--91
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Hacettepe University, Turkey
  • Ankara University, Turkey
  • Ankara University, Turkey
  • Hacettepe University, Turkey
  • Ankara University, Turkey
Bibliografia
  • 1. Aggoun, A. & Benmaamar, Z. (2019). Effect of a mixture of cadmium and lead on nitrate and phosphate removal by the duckweed Lemna gibba, Annali di Botanica, 9, pp. 53-62, DOI: 10.13133/2239-3129/14301.
  • 2. Andresen, E., Peiter, E. & Küpper, H. (2018). Trace metal metabolism in plants, Journal of Experimental Botany, 69, 5, pp. 909-954, DOI: 10.1093/jxb/erx465.
  • 3. Axtell, N.R., Sternberg, S.P.K. & Claussen, K. (2003). Lead and nickel removal using microspora and Lemna minor, Bioresource Technology, 89, 1, pp. 41-48, DOI: 10.1016/S0960- 8524(03)00034-8.
  • 4. Bağci, H.R. & Şengün, M.T. (2012). Effects on the human environment and plants desert dusts, Marmara Coğrafya Dergisi, 24, pp. 409-433.
  • 5. Basile, A., Sorbo, S., Conte, B., Cobianchi, R.C., Trinchella, F., Capasso, C. & Carginale, V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes, International Journal of Phytoremediation, 14, 4, pp. 374-387, DOI: 10.1080/15226514.2011.620653.
  • 6. Bokhari, S.H., Ahmad, I., Mahmood-Ul-Hassan, M. & Mohammad, A. (2016). Phytoremediation potential of Lemna minor L. for heavy metals, International Journal of Phytoremediation, 18, 1, pp. 25-32, DOI: 10.1080/15226514.2015.1058331.
  • 7. Chakraborty, J. & Das, S. (2016). Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants, Environmental Science and Pollution Research, 23, 17, pp. 16883-16903, DOI: 10.1007/s11356-016-6887-7.
  • 8. Deshmukh, R., Khardenavis, A.A. & Purohit, H.J. (2016). Diverse metabolic capacities of fungi for bioremediation, Indian Journal of Microbiology, 56, 3, pp. 247-264, DOI: 10.1007/s12088-016- 0584-6.
  • 9. Fikirdeşici-Ergen, Ş., Üçüncü-Tunca, E., Kaya, M. & Tunca, E. (2017). Bioremediation of heavy metal contaminated medium using Lemna minor, Daphnia magna and their consortium, Chemistry and Ecology, 34, 1, pp. 43-55, DOI: 10.1080/02757540.2017.1393534.
  • 10. Fikirdeşici-Ergen, Ş. & Üçncü-Tunca, E. (2018). Nanotoxicity modelling and removal efficiencies of ZnONP, International Journal of Phytoremediation, 20, 1, pp. 16-26, DOI: 10.1080/15226514.2017.1319324.
  • 11. Fontanilla, C.S. & Cuevas, V.C. (2010). Growth of Jatropha curcas L. seedlings in copper-contaminated soils amended with compost and Trichoderma pseudokoningii Rifai, Philippine Agricultural Scientist, 93, 4, pp. 384-391.
  • 12. Garcia-Molina, A., Andres-Colas, N., Perea-Garcia, A., Del Valle-Tascon, S., Penarrubia, L. & Puig, S. (2011). The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency, The Plant Journal, 65, pp. 848-860, DOI: 10.1111/j.1365-313X.2010.04472.x.
  • 13. Gomez-Casati, D.F., Busi, M.V. & Pagani, M.A. (2018). Plant frataxin in metal metabolism, Frontiers in Plant Science, 9, pp. 1-8, DOI: 10.3389/fpls.2018.01706.
  • 14. Grillet, L., Mari, S. & Schmidt, W. (2013). Iron in seeds-loading pathways and subcellular localization, Frontiers in Plant Science, 4, pp. 1-8, DOI: 10.3389/fpls.2013.00535.
  • 15. Hansch, R. & Mendel, R.R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Current Opinion in Plant Biology, 12, pp. 259-266, DOI: 10.1016/j. pbi.2009.05.006.
  • 16. Hanks, N.A., Caruso, J.A. & Zhang, P. (2015). Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters, Journal of Environmental Management, 164, pp. 41-45, DOI: 10.1016/j.jenvman.2015.08.026.
  • 17. Hashimoto, A. & Kambe, T. (2015). Mg, Zn and Cu transport proteins: a brief overview from physiological and molecular perspectives, Journal of Nutritional Science and Vitaminology, 61, pp. 116-118, DOI: 10.3177/jnsv.61.S116.
  • 18. Hejna, M., Gottardo, D., Baldi, A., Dell’Orto, V., Cheli, F., Zaninelli, M. & Rossi, L. (2018). Review: Nutritional ecology of heavy metals, Animal, 12, 10, pp. 2156-2170, DOI: 10.1017/S175173111700355X.
  • 19. Huang, H., Hu, C.X., Tan, Q., Hu, X., Sun, X. & Bi, L. (2012). Effects of Fe EDDHA application on iron chlorosis of citrus trees and comparison of evaluations on nutrient balance with three approaches, Scientia Horticulturae, 146, pp. 137-142, DOI: 10.1016/j.scienta.2012.08.015.
  • 20. ISO (2006). International Organization for Standardization, determination of the toxic effect of water constituents and wastewater on duckweed (Lemna minor) - Duckweed growth inhibition test, ISO norm 20079.
  • 21. John, R., Ahmad, P., Gadgil, K. & Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L., Plant, Soil and Environment, 54, 6, pp. 262-270, DOI: 10.17221/2787-PSE.
  • 22. Johnson, M.S. & Meskhidze, N. (2013). Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy, Geoscientific Model Development, 6, pp. 1137-1155, DOI: 10.5194/gmd-6-1137-2013.
  • 23. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K., Lee, Y.B. & Naidu, R. (2016). Pyro sequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation, Journal of Hazardous Materials, 317, pp. 169-179, DOI: 10.1016/j.jhazmat.2016.05.066.
  • 24. Laity, J. (2008). Deserts and Deserts Environments, Wiley-Blackwell Publications & Chichester, United Kingdom 2008.
  • 25. Lee, S.R. (2018). Critical role of zinc as either an antioxidant or a prooxidant in cellular systems, Oxidative Medicine and Cellular Longevity Hindawi, 9156285, DOI: 10.1155/2018/9156285.
  • 26. Majlesi, M. & Hashempour, Y. (2017). Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on response surface modeling, Archives of Environmental Protection, 43, 4, pp. 13-25, DOI: 10.1515/ aep-2017-0035.
  • 27. Milner, M.J., Seamon, J., Craft, E. & Kochian, L.V. (2013). Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis, Journal of Experimental Botany, 64, 1, pp. 369-381, DOI: 10.1093/jxb/ers315.
  • 28. Mkandawire, M. & Dudel, E.G. (2007). Are Lemna spp. effective phytoremediation agents, Bioremediation, Biodiversity and Bioavailability, 1, 1, pp. 56-71.
  • 29. Mohammed, D.A. (2016). Comparative study of the toxicity and phyto-extraction capacity of L. minor and L. gibba in polluted water by cadmium, International Journal of Plant, Animal and Environmental Sciences, 6, 3, pp. 6-17, DOI: 10.21276/Ijpaes.
  • 30. OECD (2006). Organisation for Economic Co-operation and Development Guidelines for the Testing of Chemicals Test No. 221: Lemna sp. Growth Inhibition Test.
  • 31. Osredkar, J. & Sustar, N. (2011). Copper and zinc, biological role and significance of copper/zinc imbalance, Journal of Clinical Toxicology, S3, 001, DOI: 10.4172/2161-0495.S3-001.
  • 32. Özsoy, T. & Örnektekin, S. (2008). Red rain in the North-Eastern Mediterranean, Ecology, 18, 69, pp. 20-31.
  • 33. Parmar, M. & Thakur, L.S. (2013). Heavy metal Cu, Ni and Zn: toxicity, health hazards and their removal techniques by low cost adsorbents: a short overview, International Journal of Plant, Animal and Environmental Sciences, 3, 3, pp. 143-157.
  • 34. Pilon, M., Ravet, K. & Tapken, W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases, Biochimica et Biophysica Acta, 1807, 8, pp. 989-998, DOI: 10.1016/j.bbabio.2010.
  • 35. Puig, S., Andres-Colas, N., Garcia-Molina, A. & Penarrubia, L. (2007). Copper and iron homeostasis in Arabidopsis: response to metal deficiencies, interactions and biotechnological applications, Plant, Cell & Environment, 30, pp. 271-290, DOI: 10.1111/j.1365-3040.2007.01642.x.
  • 36. Puig, S. (2014). Function and regulation of the plant COPT family of high-affinity copper transport proteins, Advances in Botany, 476917, DOI: 10.1155/2014/476917.
  • 37. Rizzolo, A.J., Barbosa, C.G.G., Borillo, G.C., Godoi1, A.F.L., Souza, R.A.F., et al. (2017). Mineral nutrients in Saharan dust and their potential impact on Amazon rainforest ecology, Atmospheric Chemistry and Physics Discussions, 16, DOI: 10.5194/acp-2016-557.
  • 38. Rout, G.R. & Sahoo, S. (2015). Role of iron in plant growth and metabolism, Reviews in Agricultural Science, 3, pp. 1-2, DOI: 10.7831/ras.3.1.
  • 39. Ruiz, L.M., Jensen, E.L., Rossel, Y., Puas, G.I., Gonzalez-Ibanez, A.M., Bustos, R.I., Ferrick, D.A. & Elorza, A.A. (2016). Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562, Mitochondrion, 29, pp. 18-30, DOI: 10.1016/j.mito.2016.04.005.
  • 40. Saydam, C.A. (2014). Desert dust cloud interactions and natural iron enrichment mechanism, International Journal of Environment and Geoinformatics, 1, 1-3, pp. 1-11.
  • 41. Schoffman, H., Lis, H., Shaked, Y. & Keren, N. (2016). Iron-nutrient interactions within phytoplankton, Frontiers in Plant Science, 7, 1223, DOI: 10.3389/fpls.2016.01223.
  • 42. Sidhoum, W. & Fortas, Z. (2019). The beneficial role of indigenous arbuscular mycorrhizal fungi in phytoremediation of wetland plants and tolerance to metal stress, Archives of Environmental Protection, 45, 1, pp. 103-114, DOI: 10.24425/aep.2019.125916.
  • 43. Skjolding, L.M., Winther-Nielsen, M. & Baun, A. (2014). Trophic transfer of differently functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish (Danio rerio), Aquatic Toxicology, 157, pp. 101-108, DOI: 10.1016/j. aquatox.2014.10.005.
  • 44. Thomas, M., Zdebik, D. & Białecka, B. (2018a). Use of sodium trithiocarbonate for remove of chelated copper ions from industrial wastewater originating from the electroless copper plating process, Archives of Environmental Protection, 44, 2, pp. 32-42, DOI: 10.24425/119682.
  • 45. Thomas, M., Białecka, B. & Zdebik, D. (2018b). Removal of copper, nickel and tin from model and real industrial wastewater using sodium trithiocarbonate. The negative impact of complexing compounds, Archives of Environmental Protection, 44, 1, pp. 33-47, DOI: 10.24425/118179.
  • 46. Thomas, M., Białecka, B. & Zdebik, D. (2018c). Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method, Archives of Environmental Protection, 43, 4, pp. 39-49, DOI: 10.1515/aep-2017-0044.
  • 47. Üçüncü, E., Tunca, E., Fikirdeşici, Ş., Özkan, A.D. & Altindag, A. (2013a). Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor, Bulletin of Environmental Contamination and Toxicology, 91, 5, pp. 600-604, DOI: 10.1007/s00128-013-1107-3.
  • 48. Üçüncü, E., Tunca, E., Fikirdeşici, Ş. & Altindag, A. (2013b). Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor), International Journal of Phytoremediation, 15, 4, pp. 376-384, DOI: 10.1080/15226514.2012.702808.
  • 49. Üçüncü, E., Özkan, A.D., Kurşungöz, C., Ülger, Z.E., Ölmez, T.T., Tekinay, T., Ortaę, B. & Tunca, E. (2014). Effects of laser ablated silver nanoparticles on Lemna minor, Chemosphere, 108, pp. 251-257, DOI: 10.1016/j.chemosphere.2014.01.049.
  • 50. Verma, R. & Dwivedi, P. (2013). Heavy metal water pollution -a case study, Recent Research in Science and Technology, 5, 5, pp. 98-99.
  • 51. Waters, B.M., Chu, H.H., Didonato, R.J., Roberts, L.A., Eisley, R.B., Lahner, B., Salt, D.E. & Walker, E.L. (2006). Mutations in Arabidopsis yellow stripe-like 1 and yellow stripe-like 3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds, Plant Physiology, 141, pp. 1446-1458, DOI: 10.1104/ pp.106.082586.
  • 52. Waters, B.M. & Armbrust, L.C. (2013). Optimal copper supply is required for normal plant iron deficiency responses, Plant Signaling & Behavior, 8, 12, e26611, DOI: 10.4161/psb.26611.
  • 53. Williams, L.E. & Mills, R.F. (2005). P1B-ATPases-an ancient family of transition metal pumps with diverse function in plants, Trends in Plant Science, 10, pp. 491-502, DOI: 10.1016/j. tplants.2005.08.008.
  • 54. Yruela, I. (2005). Copper in plants, Brazilian Journal of Plant Physiology, 17, 1, pp. 145-156, DOI: 10.1590/S1677-04202005000100012.
  • 55. Yuan, M., Li, X., Xiao, J. & Wang, S. (2011). Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice, BMC Plant Biology, 11, 69, pp. 1-12, DOI: 10.1186/1471-2229-11-69.
  • 56. Yücekutlu, N., Terzioglu, S., Saydam, C. & Bildaci, I. (2011). Organic farming by using Saharan soil: could it be an alternative to fertilizers? Hacettepe Journal of Biology and Chemistry, 39, 1, pp. 29-37.
  • 57. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff, Archives of Environmental Protection, 44, 1, pp. 87-96, DOI: 10.24425/118185.
  • 58. Zhang, D., Hua, T., Xiao, F., Chen, C., Gersberg, R.M., Liu, Y., Stuckey, D., Ng, W.J. & Tan, S.K. (2015). Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani, Chemosphere, 120, pp. 211-219, DOI: 10.1016/j.chemosphere.2014.06.041.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c39c626-29f8-4253-92e7-78502e3785e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.