PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości mechaniczne betonu z kruszywem ze spiekanych popiołów lotnych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Mechanical and durability properties of sintered fly ash aggregate concrete
Języki publikacji
PL EN
Abstrakty
PL
Ochrona zasobów naturalnych i efektywne zarządzanie odpadami, które mogą szkodzić naszemu środowisku, stanowi nie lada wyzwanie. Niniejsza praca poświęcona jest badaniu różnych właściwości betonu klasy M30, w którym kruszywo grube zostało całkowicie zastąpione dostępnym na rynku kruszywem ze spiekanego popiołu lotnego. Okazało się, że kruszywo to spełnia wymagania wytrzymałości docelowe betonu. W celu dalszej poprawy odporności na pękanie i wytrzymałości na rozciąganie zastosowano włókna bazaltowe. Dodatek włókien poprawił właściwości mechaniczne o około 3-4%. Badanie przepuszczalności chlorków przyspieszoną metodą i absorpcji wody wykazało, że trwałość betonu z kruszywa ze spiekanego popiołu lotnego mieści się w granicach normy.
EN
Conservation of natural resources and effective management of waste materials that can harm our environment is a challenging phenomenon. This paper is focused to study the different properties of M30 grade concrete where the coarse aggregate has been completely replaced by commercially available sintered fly ash aggregate and it has proved to meet the target strength. To further improve the crack resisting behavior and tensile strength, basalt fibers was incorporated. The incorporation of fibers has improved the mechanical properties to around 3-4%. The RCPT and water absorption test has proved that the durability properties of sintered fly ash aggregate are within the standard specified.
Czasopismo
Rocznik
Strony
388--401
Opis fizyczny
Bibliogr. 44 poz., il., tab.
Twórcy
  • T.J.S Engineering College, Thiruvallur, India
  • Division of Structural Engineering, Anna University, Chennai, India
Bibliografia
  • 1. Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia , Y.Q. Xi, A comprehensive review on the applications of coal fly ash. Earth Sci. Rev. 141, 105-121 (2015).
  • 2. S.Sahoo, B.B. Das, Mineralogical Study of Concretes Prepared Using Carbonated Fly ashas Part Replacement of Cement. In: B. Das, N. Neithalath (Eds) Sustainable Construction and Building Materials. Lecture Notes in Civil Engineering, vol 25. Springer, Singapore. doi: https://doi.org/10.1007/978-981-13-3317-0_45.
  • 3. C.-H. Huang, S.-K. Lin, C.-S. Chang, H.-J. Chen, Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 46, 71-78 (2013).
  • 4. G.S.Ryu, Y.B. Lee, K.T.Koh, Y.S. Chung, The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Constr. Build. Mater. 47, 409-418 (2013).
  • 5. N.U. Kockal, T. Ozturan, Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes. J. Hazard. Mater. 179, 954-965 (2010).
  • 6. E. Soco, J. Kalembkiewicz, Investigations of sequential leaching behaviour of Cu and Zn from coal fly ash and their mobility in environmental conditions. J. Hazard. Mater. 145, 482–487 (2007).
  • 7. C.W. Babbitt, A.S. Lindner, A life cycle inventory of coal used for electricity production in Florida. J. Clean. Prod. 13. 903-912 (2005).
  • 8. M.S. Nadesan, P. Dinakar, Structural concrete using sintered fly ash lightweight aggregate: A review. Constr. Build. Mater. 154, 928-944 (2017).
  • 9. M.S. Nadesan, P. Dinakar, Influence of type of binder on high-performance sintered fly ash lightweight aggregate concrete. Constr. Build. Mater. 176, 665-675 (2018).
  • 10. M.N. Haque , H. Al-Khaiat, O. Kayali, Strength and durability of lightweight concrete. Cem. Concr. Comp. 26, 307-314 (2004).
  • 11. H. Al-Khaiat, M.N. Haque, Effect Of Initial Curing On Early Strength And Physical Properties Of A Lightweight Concrete. Cem. Concr. Res. 28(6), 859-866 (1998).
  • 12. O. Kayali, M.N. Haque, B. Zhu, Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash. Cem. Concr. Res. 29, 1835-1840 (1999).
  • 13. O. Kayali, M.N. Haque, B. Zhu, Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cem. Concr. Comp. 25, 207-213 (2003).
  • 14. B. Chiaia, J.G.M. van Mier and A. Vervuurt, Crack Growth Mechanisms In Four Different Concretes: Microscopic Observations And Fractal Analysis. Cem.Concr. Res.28,(1), 103-114 (1998).
  • 15. M.E. Arslan, Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 114, 383-391 (2016).
  • 16. C. Jiang, K. Fan, F. Wu, D. Chen, Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 58, 187-193 (2014).
  • 17. J. Branston, S. Das, S.Y. Kenno, C. Taylor, Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 124, 878-886 (2016).
  • 18. V. Dhanda, G. Mittala, K.Y. Rheea, D. Hui, A Short Review on Basalt Fiber Reinforced Polymer Composites. Compos. B 73, 166-180 (2014). doi: http://dx.doi.org/10.1016/j.compositesb.2014.12.011.
  • 19. J. Sim, C. Park, D.Y. Moon, Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B 36, 504-512 (2005).
  • 20. V. Fiore, T. Scalici, G. Di Bella, A. Valenza, A review on basalt fibre and its composites, Compos. B74, 74-94 (2015).
  • 21. J.J. Lee, J. Song, H. Kim, Chemical Stability of Basalt Fiber in Alkaline Solution. Fibers Polym. 15(11), 2329-2334 (2014).
  • 22. B. Wei, H. Cao, S. Song, Environmental resistance and mechanical performance of basalt and glass fibers. Mater. Sci. Eng. A 527, 4708-4715 (2010).
  • 23. V. Fiore, G. Di Bella, A. Valenza, Glass-basalt/epoxy hybrid composites for marine applications. Mater. Des. 32, 2091-2099 (2011).
  • 24. A. Esnaola, I. Ulacia, L. Aretxabaleta, J. Aurrekoetxea, I. Gallego, Quasi-static crush energy absorption capability of E-glass/polyester and hybrid E-glass-Basalt/polyester composite structures. Mater. Des. 76(5),18-25 (2015). doi: http://dx.doi.org/10.1016/j.matdes.2015.03.044.
  • 25. J. Chakkamalayath, M. Santhanam, R. Gettu, Cement-superplasticiser compatibility - Issues and challenges. Indian Concr. J. 85(7):48-60 (2011).
  • 26. IS 12269: 1987 Specification -For 53 Grade Ordinary Portland cement, Bureau of Indian Standards, New Delhi, India.
  • 27. IS: 383-1970 - Specification For Coarse And Fine Aggregates From Natural Sources For Concrete, Bureau Of Indian Standards, New Delhi, India.
  • 28. IS: 2386 (Part III) - 1963, Specific Gravity, Density, Voids, Absorption And Bulking, Bureau Of Indian Standards, New Delhi, India.
  • 29. IS 10262 (2009): Guidelines for concrete mix design proportioning, Bureau Of Indian Standards, New Delhi, India.
  • 30. IS: 516 - 1959- Methods of Tests for Strength Of Concrete, Bureau Of Indian Standards, New Delhi, India.
  • 31. IS 5816 (1999): Method of Test Splitting Tensile Strength of Concrete, Bureau Of Indian Standards, New Delhi, India.
  • 32. IS 2770-1 (1967): Methods of testing bond in reinforced concrete, Part 1: Pull-out test, Bureau Of Indian Standards, New Delhi, India.
  • 33. IS 1124 (1974): Method of test for determination of water absorption, apparent specific gravity and porosity of natural building stone, Bureau of Indian Standards, New Delhi, India.
  • 34. L. Krishnaraj, P.T. Ravichandran, Characterisation of ultra-fine fly ash as sustainable cementitious material for masonry construction. Ainsham Eng. J. 12, 259-269 (2021)
  • 35. L. Krishnaraj, R. Niranjan, S.K. Rajendran, K.G. Prem, Characterization study of Zinc Sulphate’s Influence and Retarding Mechanism with Coarserand Finer Fly Ash Particles in Concrete. KSCE Journal of Civil Engineering. 24, 2751-2766 (2020).
  • 36. L. Krishnaraj, R. Niranjan, G. Prem Kumar, S. Kumar Rajendran, Numerical and experimental investigation on mechanical and thermal behaviour of brick masonry: Anefficient consumption of ultrafine fly ash. Constr. Build. Mater. 253, 119232 (2020).
  • 37. L. Krishnaraj, P.T. Ravichandran, Investigation on grinding impact of fly ash particles and its characterization analysis in cement mortar composites. Ain Shams Eng. J. 10, 267-274 (2019).
  • 38. L. Krishnaraj, P.T. Ravichandran, Impact of Chloride Grinding Aid with Modified Fly Ash using Top down Nanotechnology on Grinding Performance. Constr. Build. Mater. 199, 225-233, (2019).
  • 39. L. Krishnaraj, P. T. Ravichandran, S. Sagadevan, Synthesis and Characterization of Grinding Aid Fly Ash Blended Mortar Effect on Bond Strength of Masonry Prisms. Mater. Res. Express, 5, 045052 (2018).
  • 40. L. Krishnaraj, P. T. Ravichandran, P. R. Kannan Rajkumar, P. Keerthy Govind, Effectiveness of Alkali Activators on Nano Structured Fly ash in Geopolymer Mortar. Indian J. Sci. Techn. 9(33), 1-7 (2016).
  • 41. P. R. Kannan Rajkumar, P. T. Ravichandran, J. K. Ravi, L. Krishnaraj, Investigation on the Compatibility of Cement Paste with SNF and PCE based Superplasticizers. Indian J. Sci. Techn. 9(34), 1-5 (2016).
  • 42. N. Arivusudar, S. Suresh Babu, Performance of ground granulated blast-furnace slag based engineered cementitious composites. Cem.Wapno Beton, 25, 94-102 (2020). doi: https://doi.org/10.32047/CWB.2020.25.2.2.
  • 43. A.R. Krishnaraja, S. Kandasamy, S. Anandakumar, S.M. Jegan, Mechanical performance of hybrid engineered cementitious composites. Cem. Wapno Beton 23, 479-486 (2018).
  • 44. N. Arivusudar, S. Suresh Babu, Mechanical properties of engineered cementitious composites developed with silica fume. Cem. Wapno Beton 25(4), 282-291(2020). doi: https://doi.org/10.32047/cwb.2020.25.4.3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c378b4f-1177-4154-9306-46fad505dec3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.