PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of acoustic response of car interion for structural excitations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The transition from internal combustion to electric propulsion in cars presents component designers with new challenges in terms of noise reduction. Until now, components such as the suspension, its knocks were masked by the combustion engine or exhaust system. The absence of such significant sources, means that hitherto inaudible components are starting to become a nuisance. In order to reduce their noise, a number of optimisation solutions, both active and passive, are used. In order to do so, relevant measurements and data analysis must be carried out. This paper aims to present the acoustic characteristics of the interiors of two cars excited structurally in the vicinity of the front shock absorber mounting and by the operation of another component, the windscreen wipers on dry and wet windscreens. Measurements were made using 3D intensity probes based on acoustic particle velocity sensors. The results, in the form of both acoustic particle velocity and sound pressure characteristics and spectrograms, are presented comparatively for two types of car.
Czasopismo
Rocznik
Strony
art. no. 2022413
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • BWI Poland Technologies sp. z o.o., ul. Kpt. Mieczysława Medweckiego 2, 32-083 Balice, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Mechanics and Vibroacoustics, Adama Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Cao J, Liu J, Wang J, Lai X. Acoustic vector sensor: Reviews and future perspectives. IET Signal Processing. 2017;11(1):1-9. https://doi.org/10.1049/iet-spr.2016.0111.
  • 2. Comesana D. Scan-based sound visualisation methods using sound pressure and particle velocity. PhD Thesis, University of Southampton. 2014.
  • 3. Huang H, Huang X, Ding W, Yang M, Fan D, Pang J. Uncertainty optimization of pure electric vehicle interior tire/road noise comfort based on data-driven. Mechanical Systems and Signal Processing. 2022; 165:108300. https://doi.org/10.1016/J.YMSSP.2021.108300.
  • 4. Kłaczyński M. Identification of aircraft noise during acoustic monitoring by using 3d sound probes. Acta Physica Polonica A. 2014;125(4A):144-148.
  • 5. Kotus J, Czyżewski A, Kostek B. 3D acoustic field intensity probe design and measurements. Archives of Acoustics. 2016;41(4):701-711.
  • 6. Kun Qian Zhichao Hou. Intelligent evaluation of the interior sound quality of electric vehicles. Applied Acoustics. 2021;173:107684. https://doi.org/10.1016/j.apacoust.2020.107684.
  • 7. LMS. Transfer path analysis, the qualification and quantification of vibroacoustic transfer paths. LMS International, Application Notes. 2005.
  • 8. Mamala J, Graba M, Bieniek A, Prażnowski K, Augustynowicz A, Śmieja M. Study of energy consumption of a hybrid vehicle in real-world conditions. Eksploatacja i Niezawodnosc – Maintenance and Reliability. 2021;23(4):636-645. http://doi.org/10.17531/ein.2021.4.6.
  • 9. Meyer A, Döbler D. Noise source localization within a car interior using 3D-microphone arrays. Proceedings of the BeBeC 2006 Berlin, Germany. 2006.
  • 10. Paluch W, Kłaczyński M. Analysis of acoustic propagation of automotive cooler during run up and run down. Diagnostyka. 2021;22(4):3-8. https://doi.org/10.29354/diag/142524.
  • 11. Singh S, Mohanty A. HVAC noise control using natural materials to improve vehicle interior sound quality. Applied Acoustics. 2018;280:100-109. https://doi.org/10.1016/j.apacoust.2018.05.013.
  • 12. Swart DJ, Bekker A, Bienert J. The subjective dimensions of sound quality of standard production electric vehicles. Applied Acoustics. 2018;129:354-364. https://doi.org/10.1016/j.apacoust.2017.08.012.
  • 13. Tijs E, de Bree H. Mapping 3D sound intensity streamlines in a car interior. SAE Technical Paper 2009-01-2175. 2009. https://doi.org/10.4271/2009- 01-2175.
  • 14. Vaičiūnas G, Steišūnas S, Bureika G. Specification of estimation of a passenger car ride smoothness under various exploitation conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2021; 23(4):719-725. http://doi.org/10.17531/ein.2021.4.14.
  • 15. Website: https://magazine.fev.com/en/nvhrequirements-of-electric-drive-units-in-the-vehicleinterior/ (seen 1.02.2022).
  • 16. Wierzbicki S. Diagnosing microprocessor controlled systems. Polska Akademia Nauk, Teka Komisji Motoryzacji i Energetyki Rolnictwa, Tom VI, Lublin. 2000: 183-188.
  • 17. Weyna S. Acoustic energy distribution of real sources, WNT Warszawa. 2005. (in Polish).
  • 18. Weyna S. Identification of reflection, diffraction and scattering effects in real acoustic flow fields. Archives of Acoustics. 2003;28(3):191-203.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c35d321-4b0c-4eb9-8045-ce59925fae7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.