Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The level of de gradation of reinforced concrete bridges was evaluated based on the in-situ measurements performed on five reinforced concrete bridges under service located in the Czech Republic. The combined effect of carbonation and chlorides with respect to the corrosion of steel reinforcement, namely the pH and the amount of water-soluble chlorides, were evaluated on drilled core samples of concrete. Based on these parameters, the ratio between the concentrations of Cl- and OH, which indicates the ability of concrete to protect reinforcement, was calculated. All the data were statistically summarized and the relationships among them were provided. The main goal of this study is to evaluate the non-proportional effect of the amount of chlorides per mass of concrete on the risk of corrosion initiation and to localize the “critical” locations in the bridges that are the most affected by the degradation effects.
Wydawca
Czasopismo
Rocznik
Tom
Strony
81--89
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- VSB - Technical University of Ostrava, Faculty of Civil Engineering, Ostrava-Poruba, Czech Republic
autor
- VSB - Technical University of Ostrava, Faculty of Civil Engineering, Ostrava-Poruba, Czech Republic
autor
- Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
autor
- Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
autor
- VSB - Technical University of Ostrava, Faculty of Civil Engineering, Ostrava-Poruba, Czech Republic
autor
- Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic
Bibliografia
- [1] European Standard, Management. 225. (2004).
- [2] European Committee for Standarization, EN 206-1. Concrete - Part 1: Specification, performance, production and conformity, (2000).
- [3] S. Seitl, P. Miarka, V. Bílek, Theor. Appl. Fract. Mech. (2018).
- [4] P. Konečný, P. Lehner, P. Ghosh, Q. Tran, Key Eng. Mater. 761, 144-147. (2018).
- [5] P. Ghosh, Q. Tran, Int. J. Concr. Struct. Mater. 9, 119-132. (2015)
- [6] D. Darwin, J. Browning, M. O’Reilly, L. Xing, J. Ji, ACI Mater. J. 106, 176-183. (2009).
- [7] R. E. Weyers, W. Pyc, M. M. Sprinkel, ACI Mater. J. (1998).
- [8] A. Raharinaivo, J. M. R. Genin, Mater. Construcción. 36, 5-16. (1986).
- [9] D. Vořechovská, P. Konečný, M. Šomodíková, P. Rovnaníková, Preliminary analysis of durability related field inspection of highway bridge No. 57-039, in: IASTEM 2018, 55-58 (2018).
- [10] S. Helland, S. Norge, O. Norway, Performance-Based Service Life Design in the 2021 Version of the European Concrete Standards-Ambitions and Challenges, in: Hans Beushausen (Ed.), Symp. 2016 Performance-Based Approaches Concr. Struct., Cape Town, South Africa (2016).
- [11] D. Novák, M. Vořechovský, B. Teplý, Adv. Eng. Softw. (2014).
- [12] D. Matesová, B. Teplý, M. Chromá, P. Rovnaník, 1-10. (2007).
- [13] A. Boddy, E. Bentz, M.D.A. Thomas, R.D. Hooton, Cem. Concr. Res. (1999).
- [14] M. G. Stewart, D. V. Rosowsky, Struct. Saf. 20, 91-109. (1998).
- [15] P. Ghosh, P. Konečný, P. J. Tikalsky, RILEM Bookseries. 5, 85-100. (2011).
- [16] P. Lehner, P. Konečný, P. Ghosh, Q. Tran, Int. J. Math. Comput. Simul. 8, 103-106. (2014).
- [17] D. Vořechovská, J. Podroužek, M. Chromá, P. Rovnaníková, B. Teplý, Comput. Civ. Infrastruct. Eng. 24, 446-458. (2009).
- [18] E. C. Bentz, M.D.A. Thomas, Life-365 User Man. 1-87. (2013)
- [19] JCSS, Probabilistic Model Code, Joint Committee on Structural Safety, (2001).
- [20] P. Konecny, P. Lehner, Frat. Ed Integrita Strutt. 11, 29-37. (2017).
- [21] FIB, Model Code 2010, fib Bulletins No. 65 and 66, 2012 and fib Bulletin No. 34, “Service Life Design,” Lausanne, Switzerland, (2006).
- [22] C. Andrade, fib T.8.3: Operational document to support Service Life Design, (2016).
- [23] Shortened diagnostic explorations of bridges No. 54-040, 55I-026a, 55I-030, 55-033, 57-039 (In Czech: Zkrácené diagno-stické průzkumy mostů ev.č. 54-040, 55I-026a, 55I-030, 55-033, 57-039), 2013-2016 (unpublished), Brno, Czech Republic, (2016).
- [24] J. J. Jasielec, K. Szyszkiewicz, A. Królikowska, R. Filipek, Cem. Wapno, Bet. 2017 154-167 (2017).
- [25] M. Jasniok, Procedia Eng. 108, 332-339 (2015).
- [26] A. Neville, Properties of Concrete - 5th Edition, (2012).
- [27] G. K. Glass, N. R. Buenfeld, Corros. Sci. (1997).
- [28] C. Locke, A. Siman, Electrochemistry of Reinforcing Steel in Salt-Contaminated Concrete, in: Corros. Reinf. Steel Concr., (2009).
- [29] ACI, ACI 201.2R-01 Guide to Durable Concrete reported by ACI Committee 201, (2008). http://ccl.worldcat.org.ccl.idm.oclc.org/oclc/244388069.
- [30] B. Huet, V. L’Hostis, H. Idrissi, I. Tovena, A Review on Corrosion Mechanisms of Reinforced Concrete Degradation, in: Environ. Degrad. Eng. Mater., Bordeaux, France, (2003).
- [31] P. J. Tikalsky, D. Pustka, P. Marek, ACI Struct. J. 102, 481-486. (2005).
- [32] D. P. Bentz, E. J. Garboczi, Y. Lu, N. Martys, A. R. Sakulich, W. J. Weiss, Cem. Concr. Compos. 38, 65-74 (2013).
Uwagi
EN
1. This contribution has been developed as a part of the research project GACR 18-07949S “Probabilistic Modeling of the Durability of Reinforced Concrete Structures Considering Synergic Effect of Carbonation, Chlorides and Mechanical Action” supported by the Czech Science Foundation and of the project No. LO1408 “AdMaS UP – Advanced Materials, Structures and Technologies”, supported by the Ministry of Education, Youth and Sports of the Czech Republic under ‘National Sustainability Programme I’. We are grateful to Mr. Igor Suza from Mostní a silniční, s.r.o. company that enabled the processing of presented data from in-situ measurements carried out by him and his colleagues.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c30493d-f89e-4f89-9e74-f1711c1176b5