PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The impact of land use and water quality on the flora of ecotones along a small lowland river (Central Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented study describes the plant species diversity within the terrestrial-water ecotone in relation to the land-use form in a river valley. The study was performed in a lowland river valley where the main forms of riparian zones are partially urbanized, forested and agricultural; the latter being most commonly observed in the investigated region. The present study examines the vascular flora of ecotones where more than 100 plant species were identified. Ecological indices were calculated at all sampling sites based on Zarzycki’s ecological values and biodiversity indices. In addition, the aim of the study was to identify the relationships between the physico-chemical parameters of the water and the floristic indicators in the neighbouring ecotones.
Słowa kluczowe
Rocznik
Strony
138--146
Opis fizyczny
Bibliogr. 60 poz., rys. tab., wykr.
Twórcy
autor
  • Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Łódź, ul. Banacha 1/3, 90-237, Łódź, Poland
  • Department of Inorganic and Analytical Chemistry, University of Łódź, ul. Tamka 12, 91-403, Łódź, Poland
autor
  • Department of Physical Geography, University of Łódź, ul. Narutowicza 88, 90-139, Łódź, Poland
autor
  • Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Łódź, ul. Banacha 1/3, 90-237, Łódź, Poland
  • Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Łódź, ul. Banacha 1/3, 90-237, Łódź, Poland
Bibliografia
  • [1]. Aguiar F.C. & Ferreira M.T. (2005). Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin. Portugal. Environ. Conserv. 32(1): 30–41. DOI:10.1017/S0376892905001992.
  • [2]. Allan J.D. & Flecker S.A. (1993). Biodiversity conservation in running waters. BioScience 43(1): 32–443. DOI: 10.2307/1312104.
  • [3]. Anbumozhi V., Radhakrisham J. & Yamaji, E. (2005). Impact of riparian buffer zone on water quality and associated management considerations. Ecol. Eng. 24(5): 517–523. http://dx.doi.org/10.1016/j.ecoleng.2004.01.007.
  • [4]. Baart I., Gschöpf C., Blaschke A.P., Preiner S. & Hein, T. (2010). Prediction of potential macrophytes development in response to restoration measures in an urban riverine wetland. Aquat. Bot. 93(3): 153–162. http://dx.doi.org/10.1016/j.aquabot.2010.06.002.
  • [5]. Bastviken D., Olsson M. & Tranvik L. (2003). Simultaneous measurements of organic carbon mineralization and bacterial production in oxic and anoxic lake sediments. Microb. Ecol. 46(1): 73–82. DOI: 10.1007/s00248-002-1061-9.
  • [6]. Berka C., Schreier H. & Hall K. (2001). Linking water quality with agricultural intensification in a Rural Watershed. Water Air Soil Pollut. 127(1–4): 389–401. DOI: 10.1023/A:1005233005364.
  • [7]. Bilby R.E. & Bisson P.A. (1998). Function and distribution of large woody debris. In: Naiman R.J., Bilby R.E. (Eds.), River ecology and management: Lessons from the Pacific Coast (pp. 324–398). Springer, New York.
  • [8]. Bodeux A. (1955). Alnetum glutinosae. Mitt. Florist.-Soziol. Arbsgem. 5: 114–137.
  • [9]. Bornette G., Amoros C. & Lamouroux L. (1998). Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshwater Biol. 39(2): 267–283. DOI: 10.1046/j.1365-2427.1998.00273.x .
  • [10]. Braskerud B.C. (2002). Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecol. Eng. 18(3): 351–370. http://dx.doi.org/10.1016/S0925-8574(01)00099-4 .
  • [11]. Chin A. (2006). Urban transformation of river landscapes in a global context. Geomorphology 79(3–4): 460–487. http://dx.doi.org/10.1016/j.geomorph.2006.06.033.
  • [12]. Clerici N., Weissteiner C.J., Paracchini M.L., Boschetti L., Baraldi A. & Strobl P. (2013). Pan-European distribution modelling of stream riparian zones based on multi-source Earth Observation data. Ecol. Indic. 24: 211–223. http://dx.doi.org/10.1016/j.ecolind.2012.06.002.
  • [13]. Darveau M., Labbe P., Beauchesne P., Belanger L. & Huot J. (2001). The use of riparian forest strips by small mammals in a boreal balsam fir forest. Forest Ecol. Manage. 143(1–3): 95–104. http://dx.doi.org/10.1016/S0378-1127(00)00509-0.
  • [14]. Davies B., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., Bray S. & Maund S. (2008). Comparative biodiversity of aquatic habitats in the European agricultural landscape. Agric. Ecosyst. Environ. 125(1–4): 1–8. http://dx.doi.org/10.1016/j.agee.2007.10.006.
  • [15]. Douda J. (2008). Formalized classification of the vegetation of alder carr and floodplain forests in the Czech Republic. Preslia 80: 199–224.
  • [16]. Dufrêne M. & Legendre P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67(3): 345–366. http://dx.doi.org/10.1890/0012-9615(1997)067 [0345:SAAIST]2.0.CO;2 .
  • [17]. Fernandes M.R., Aguiar F.C. & Ferreira M.T. (2011). Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape Urban Plan. 99(2): 166–177. http://dx.doi.org/10.1016/j.landurbplan.2010.11.001.
  • [18]. Ferreira M.T., Albuquerque A., Aguiar F.C. & Sidorkewicz N. (2002). Assessing reference sites and ecological quality of river plant assemblages from an Iberian basin using a multivariate approach. Archiv fur Hydrobiologie 155(1): 121–145.
  • [19]. Florsheim J.L., Mount J.F. & Chin A. (2008). Bank erosion as a desirable attribute of rivers. BioScience 58(6): 519–529. DOI: 10.1641/B580608.
  • [20]. Freeman R.E. & Ray R.O. (2001). Landscape ecology practice by small scale river conservation groups. Landscape Urban Plan. 56(3–4): 171–184. http://dx.doi.org/10.1016/S0169-2046(01)00181-5.
  • [21]. Gaudi A. (2005). The human impact on the natural environment. Past, present and future. sixth ed. Blackwell Publishing.
  • [22]. Greenway M. & Woolley A. (1999). Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecol. Eng. 12(1–2): 39–55. http://dx.doi.org/10.1016/S0925-8574(98)00053-6
  • [23]. Greenway M. & Woolley A. (2001). Changes in plant biomass and nutrient removal over 3 years in a constructed free water surface flow wetland in Cairns, Australia. Wat. Sci. Tech. 44(11–12): 303–310.
  • [24]. Hald A.B. (2002). Impact of agricultural fields on vegetation of stream border ecotones in Denmark. Agric. Ecosyst. Environ. 89(1–2): 127–135. http://dx.doi.org/10.1016/S0167-8809(01)00324-3.
  • [25]. Harrison M.D., Groffman P.M., Mayer P.M., Kaushal S.S. & Newcomer T.A. (2011). Denitrification in alluvial wetlands in an urban landscape. J. Environ. Qual. 40(2): 634–646. DOI: 10.2134/jeq2010.0335 .
  • [26]. Keller E.A. & MacDonald A. (1995). River channel change: The role of large woody debris. In: Gurnell, A., Petts, G., (Eds.), Changing river channel. 217–235. Wiley, New York .
  • [27]. Londo G. (1976). The decimal scale for relevés of permanent quadrats. Vegetatio 33(1): 61–64. DOI: 10.1007/BF00055300.
  • [28]. Malmqvist B. & Rundle S. (2002). Threats to the running water ecosystems of the world. Environ. Conserv. 29(2): 134–153. DOI:10.1017/S0376892902000097.
  • [29]. Manolaki P. & Papastergiodou E. (2013). The impact of environment factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquat. Bot. 104: 34–46. http://dx.doi.org/10.1016/j.aquabot.2012.09.009.
  • [30]. Matuszkiewicz J.M. (2002). Zespoły leśne Polski. PWN, Warsaw, (in Polish).
  • [31]. Matuszkiewicz J.M. (2008). Potential natural vegetation of Poland, IGiPZ PAN, Warsaw.
  • [32]. McCune B. & Mefford M.S. (2011). PcOrd multivariate analysis of ecological data, version 6.06. MjM Software Design, Gleneden Beach, Oregon.
  • [33]. MEA — Millennium Ecosystem Assessment. (2005). Ecosystems and Human Wellbeing: Synthesis Report. Island Press, Washington, DC.
  • [34]. Meuleman A.F.M., Beekman J.P.H. & Verhoeven J.T.A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wastewater application. Wetlands 22(4): 712–721. DOI: 10.1672/02775212(2002)022[0712:NRANUE]2.0.CO;2.
  • [35]. Meybeck M. (2001). Global alterations of riverine geochemistry under human pressure. In: Ehlers E. (Ed.), Understanding the earth system: compartments, processes and interactions (pp. 97–113). Springer-Verlag, Heidelberg.
  • [36]. Milner A.M. & Gloyne-Phillips I.T. (2005). The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 21: 403–420. DOI: 10.1002/rra.815 .
  • [37]. Minchinton T., Simpson J. & Bertness M. (2006). Mechanisms of exclusion of native coastal marsh plants by an invasive grass. J. Ecol. 94(2): 342–354. DOI: 10.1111/j.1365-2745.2006.01099.x.
  • [38]. Mooney A.C. & Marshall E.J.P. (2001). The influence of sown margin strips management and boundary structure on herbaceous field margin vegetation in two neighbouring farms in southern England. Agric. Ecosyst. Environ. 86(2): 187–202. http://dx.doi.org/10.1016/S0167-8809(00)00283-8
  • [39]. Naiman R., Decamps H. & McClain M. (2005). Riparia — Ecology, Conservation, and Management of Streamside Communities (pp 448). Academic Press.
  • [40]. Naiman R.J. & Decamps, H. (1997). The ecology of interfaces — riparian zones. Annu. Rev. Ecol. Syst. 28: 621–658. Stable URL: http://www.jstor.org/stable/2952507
  • [41]. Palink B.J., Zassada J.C. & Hedman C.W. (2000). Ecological principles for riparian silviculture. In: Verry E., Hornbeck J.W. & Dolloff C.A. (Eds.), Riparian Management in Forests of the Continental Eastern United States (pp. 233–254). Lewis Pubs, Washington DC.
  • [42]. Patten D. T. (1998). Riparian ecosystems of semi-arid North America: Diversity and human impacts. Wetlands 18(4): 498–512. DOI: 10.1007/BF03161668
  • [43]. Pedroli B., de Blust G., Van Looy K. & Van Rooij S. (2002). Setting targets in strategies for river restoration. Landsc. Ecol. 17(1): 5–18. DOI: 10.1023/A:1015221425315
  • [44]. Prieditis N. (1997). Alnus glutinosa — dominated wetland forests of the Baltic Region: community structure, syntaxonomy and conservation. Plant Ecol. 129(1): 49–94. DOI:10.1023/A:1009759701364
  • [45]. Richardson J.S. (2008). Aquatic arthropods and forestry: large-scale land-use effects on aquatic systems in nearctic temperate regions. Can. Entomol. 140(4): 495–509. DOI: http://dx.doi.org/10.4039/n07-LS04
  • [46]. Rodewald A.D. (2003). The importance of land use uses within the landscape matrix. Wildlife Society Bulletin 31(2): 586–592. http://www.jstor.org/stable/3784344.
  • [47]. Rodewald A.D. & Bakermans, M.H. (2006). What is the appropriate paradigm for riparian forest conservation? Biol. Conserv. 128(2): 193–200. http://dx.doi.org/10.1016/j.biocon.2005.09.041.
  • [48]. Sirivedhin T. & Gray K.A. (2006). Factors affecting denitrification rates in experimental wetlands: field and laboratory studies. Ecol. Eng. 26(2): 167–181 http://dx.doi.org/10.1016/j.ecoleng.2005.09.001.
  • [49]. Sudduth E.B. & Meyer J.L. (2006). Effects of bioengineered streambank stabilization on bank habitat and macroinvertebrates in urban streams. Environ. Manag. 38(2): 218–226. DOI:10.1007/s00267-004-0381-6.
  • [50]. Sweeney B.W., Bott T.L., Jackson J.K., Kaplan L.A., Newbold J.D., Standley L.J., Hession W.C. & Horwitz R.J. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Natl. Acad. Sci. U.S.A. 101(39): 14132–14137. DOI:10.1073/pnas.0405895101
  • [51]. Szoszkiewicz K., Zbierska J., Jusik Sz., Zgoła T. (2010). Makrofitowa Metoda Oceny Rzek — Podręcznik metodyczny do oceny i klasyfikacji stanu ekologicznego wód płynących w oparciu o rośliny wodne. Wyd. Bogucki, Poznań. pp. 82.
  • [52]. Toet S., Huibers L.H.F.A., Van Logtestijn R.S.P. & Verhoeven J.T.A. (2003). Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501(1–3): 29–44. DOI:10.1023/A:1026299017464
  • [53]. Water Framework Directive 2000/60/EC. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF
  • [54]. Verry E.S., Dolloff C.A. & Manning M.E. (2004). Riparian ecotone: a functional definition and delineation for resource assessment. Water Air Soil Pollut. 4(1): 67–94. DOI: 10.1023/B:WAFO.0000012825.77300.08.
  • [55]. Weiher E. & Keddy P.A. (1995). The assembly of experimental wetland plant communities. Oikos 73: 323–335.
  • [56]. Weisner S.E.B., Eriksson P.G., Grane’li W. & Leonardson L. (1994). Influence of aquatic macrophytes on nitrate removal in wetlands. Ambio 23: 363–366.
  • [57]. Weisner S.E.B. & Thiere G. (2010). Effects of vegetation state on biodiversity and nitrogen retention in created wetlands: a test of the biodiversity-ecosystem functioning hypothesis. Freshwater Biol. 55(2): 387–396. DOI: 10.1111/j.1365-2427.2009.02288.x.
  • [58]. Zalewski M., Bis B., Łapińska M., Frankiewicz P. & Puchalski W. (1998). The importance of the riparian ecotone and river hydraulics for sustainable basin-scale restoration scenarios. Aquatic Conserve: Mar. Freshw. Ecosts. 8(2): 287–307. DOI: 10.1002/(SICI)1099-0755(199803/04)8:2〈287::AID-AQC274〉3.0.CO;2-R.
  • [59]. Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J. & Korzeniak U. (2002). Biodiversity of Poland. 2. Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow. ISBN 83-85444-95-5.
  • [60]. Zedler J.B. & Kercher S. (2004). Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23(5): 431–452. DOI: 10.1080/07352680490514673.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c2e3c90-bd6a-444a-830c-aab2d81febfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.