PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional order tube model reference adaptive control for a class of fractional order linear systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce a novel fractional order adaptive control design based on the tube model reference adaptive control (TMRAC) scheme for a class of fractional order linear systems. By considering an adaptive state feedback control configuration, the main idea is to replace the classical reference model with a single predetermined trajectory by a fractional order performance tube guidance model allowing a set of admissible trajectories. Besides, an optimization problem is formulated to compute an on-line correction control signal within specified bounds in order to update the system performance while minimizing a control cost criterion. The asymptotic stability of the closed loop fractional order control system is demonstrated using an extension of the Lyapunov direct method. The dynamical performance of the fractional order tube model reference adaptive control (FOTMRAC) is compared with the standard fractional order model reference adaptive control (FOMRAC) strategy, and the simulation results show the effectiveness of the proposed control method.
Rocznik
Strony
501--515
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
  • LGEA Laboratory, Department of Electrical Engineering, University of Oum El-Bouaghi, Oum El-Bouaghi 04000, Algeria
autor
  • Department of Electronics, Electrical Engineering and Automation, National Polytechnic School of Constantine, N.V. Ali Mendjli, Constantine 25100, Algeria; SP-LAB Laboratory, Department of Electronics, Mentouri University of Constantine 1, Route de Ain Elbey, Constantine 25000, Algeria
  • LGEA Laboratory, Department of Electrical Engineering, University of Oum El-Bouaghi, Oum El-Bouaghi 04000, Algeria
  • School of Engineering—Energy and Information, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstrasse 75A, 12459 Berlin, Germany
  • Department of Electrical Engineering, Setif-1 University, BP: El Bez, Stif 19000, Algeria
Bibliografia
  • [1] Aguila-Camacho, N. and Duarte-Mermoud, M.A. (2013). Fractional adaptive control for an automatic voltage regulator, ISA Transactions 52(6): 807–815.
  • [2] Aguila-Camacho, N., Duarte-Mermoud, M. and Gallegos, J. (2014). Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation 19(9): 2951–2957.
  • [3] Ahmad, W. and Abdel-Jabbar, N. (2006). Modeling and simulation of a fractional order bioreactor system, Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal, pp. 1–5.
  • [4] Alikhanov, A.A. (2010). On the stability and convergence of nonlocal difference schemes, Differential Equations 46(7): 949–961.
  • [5] Alikhanov, A.A. (2013). Stability and convergence of difference schemes approximating a two-parameter nonlocal boundary value problem, Differential Equations 49(7): 796–806.
  • [6] Angel, L. and Viola, J. (2018). Fractional order PID for tracking control of a parallel robotic manipulator type delta, ISA Transactions 79: 172–188.
  • [7] Bagley, R. (1983). Fractional calculus – a different approach to the analysis of viscoelastically damped structures, AIAA Journal 21(5): 741–748.
  • [8] Balaska, H., Ladaci, S., Schulte, H. and Djouambi, A. (2019). Adaptive cruise control system for an electric vehicle using a fractional order model reference adaptive strategy, IFACPapersOnLine 52(13): 194–199.
  • [9] Balaska, H., Ladaci, S. and Zennir, Y. (2018). Conical tank level supervision using a fractional order model reference adaptive control strategy, Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, ICINCO 2018, Porto, Portugal, pp. 224–231.
  • [10] Benchellel, A., Poinot, T. and Trigeassou, J.-C. (2007). Modelling and identification of diffusive systems using fractional models, in J. Sabatier et al. (Eds), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin, pp. 213–225.
  • [11] Bettayeb, M., Mansouri, R., Al-Saggaf, U. and Mehedi, I. (2017). Smith predictor based fractional-order-filter PID controllers design for long time delay systems, Asian Journal of Control 19(2): 1–12.
  • [12] Bourouba, B., Schulte, H. and Ladaci, S. (2019). A novel MRAC-based fractional adaptive control design for a class of fractional order linear systems, Proceedings of the 8th International Conference on Systems and Control (ICSC 2019), Marrakesh, Morocco, pp. 303–308.
  • [13] Charef, A., Assabaa, M., Ladaci, S. and Loiseau, J. (2013). Fractional order adaptive controller for stabilized systems via high-gain feedback, IET Control Theory and Applications 7(6): 822–828.
  • [14] Chen, L., Basua, B. and McCabe, D. (2016). Fractional order models for system identification of thermal dynamics of buildings, Energy and Buildings 133: 381–388.
  • [15] Cheng, C., Chen, C. and Chiu, G.-C. (2002). Predictive control with enhanced robustness for precision positioning in frictional environment, IEEE/ASME Transactions On Mechatronics 7(3): 385–392.
  • [16] Chittillapilly, R. and Hepsiba, D. (2015). Tube model reference adaptive control for a cylindrical tank system, Proceedings of the International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, pp. 1–4.
  • [17] Clarke, T., Narahari-Achar, B. and Hanneken, J. (2004). Mittag-Leffler functions and transmission lines, Journal of Molecular Liquids 114(1): 159–163.
  • [18] Dadras, S. and Momeni, H. (2010). Control of a fractional-order economical system VIA sliding mode, Physica A 389(12): 2434–2442.
  • [19] Djebbri, S., Ladaci, S., Metatla, A. and Balaska, H. (2020). Fractional-order model reference adaptive control of a multi-source renewable energy system with coupled DC/DC converters power compensation, Energy Systems 11(2): 1–41.
  • [20] Djouambi, A., Charef, A. and Voda, B. (2008). Fractional order robust control based on Bode’s ideal transfer function, RSJESA, Fractional order systems 42: 999–1014.
  • [21] Duarte-Mermoud, M., Aguila-Camacho, N., Gallegos, J. and Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Communications in Nonlinear Science and Numerical Simulation 22(1): 650–659.
  • [22] Goldberger, A., Bhargava, V., West, B. and Mandell, A. (1985). On the mechanism of cardiac electrical stability, Biophysics Journal 48(3): 525–528.
  • [23] He, B.-B., Zhou, H.-C., Kou, C.-H. and Chen, Y.-Q. (2019). Stabilization of uncertain fractional order system with time-varying delay using BMI approach, Asian Journal of Control, DOI: 10.1002/asjc.2193.
  • [24] Ioannou, P. and Sun, J. (1996). Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ.
  • [25] Ionescu, C., Lopes, A., Copot, D., Machado, J. and Bates, J. (2017). The role of fractional calculus in modelling biological phenomena: A review, Communications in Nonlinear Science and Numerical Simulation 51: 141–159.
  • [26] Kaczorek, T. (2011). Singular fractional linear systems and electrical circuits, International Journal of Applied Mathematics and Computer Science 21(2): 379–384, DOI: 10.2478/v10006-011-0028-8.
  • [27] Kaczorek, T. (2019). Absolute stability of a class of fractional positive nonlinear systems, International Journal of Applied Mathematics and Computer Science 29(1): 93–98, DOI: 10.2478/amcs-2019-0007.
  • [28] Kaczorek, T. and Borawski, K. (2016). Fractional descriptor continuous–time linear systems described by the Caputo–Fabrizio derivative, International Journal of Applied Mathematics and Computer Science 26(3): 533–541, DOI: 10.1515/amcs-2016-0037.
  • [29] Kamal, S. and Bandyopadhyay, B. (2015). High performance regulator for fractional order systems: A soft variable structure control approach, Asian Journal of Control 17(5): 1–5.
  • [30] Ladaci, S. and Bensafia, Y. (2016). Indirect fractional order pole assignment based adaptive control, Engineering Science and Technology, an International Journal 19(1): 518–530.
  • [31] Ladaci, S. and Charef, A. (2003). MIT adaptive rule with fractional integration, Proceedings of the CESA 2003 IMACS Multiconference on Computational Engineering in Systems Applications, Lille, France, pp. 1–6.
  • [32] Ladaci, S. and Charef, A. (2006). On fractional adaptive control, Nonlinear Dynamics 43(4): 365–378.
  • [33] Ladaci, S. and Charef, A. (2012). Fractional order adaptive control systems: A survey, in E. Mitchell and S. Murray (Eds), Classification and Application of Fractals, Nova Science Publishers, Inc., New York, NY, pp. 261–275.
  • [34] Ladaci, S., Charef, A. and Loiseau, J.J. (2009). Robust fractional adaptive control based on the strictly positive realness condition, International Journal of Applied Mathematics and Computer Science 19(1): 69–76, DOI: 10.2478/v10006-009-0006-6.
  • [35] Ladaci, S., Loiseau, J. and Charef, A. (2006). Using fractional order filter in adaptive control of noisy plants, Proceedings of the International Conference on Advances in Mechanical Engineering And Mechanics, ICAMEM 2006, Hammamet, Tunisia, pp. 1–6.
  • [36] Li, Y. and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Computers & Mathematics with Applications 59(5): 1810–1821.
  • [37] Lino, P., Maione, G. and Saponaro, F. (2015). Fractional-order modeling of high-pressure fluid-dynamic flows: An automotive application, IFAC-PapersOnLine 48(1): 382–387, DOI: 10.1016/j.ifacol.2015.05.093.
  • [38] Mirkin, B. and Gutman, P.-O. (2013). Tube model reference adaptive control, Automatica 49(4): 1012–1018.
  • [39] Mirkin, B., Gutman, P.-O. and Shtessel, Y. (2012). Coordinated decentralized sliding mode MRAC with control cost optimization for a class of nonlinear systems, Journal of the Franklin Institute 349(4): 1364–1379.
  • [40] Mirkin, B., Gutman, P.-O. and Sjoberg, J. (2011). Output-feedback MRAC with reference model tolerance of nonlinearly perturbed delayed plants, 18th IFAC World Congress, Milan, Italy, pp. 6751–6756.
  • [41] Moaddy, K., Radwan, A.G., Salama, K., Momani, S. and Hashim, I. (2012). The fractional-order modeling and synchronization of electrically coupled neuron systems, Computers & Mathematics with Applications 64(10): 3329–3339.
  • [42] Mondal, D. and Biswas, K. (2011). Performance study of fractional order integrator using single-component fractional order element, IET Circuits Devices & Systems 5(4): 334–342, DOI: 10.1049/iet-cds.2010.0366.
  • [43] Mondal, R., Chakraborty, A., Dey, J. and Halder, S. (2020). Optimal fractional order PID controller for stabilization of cart-inverted pendulum system: Experimental results, Asian Journal of Control 22(3): 1345–1359.
  • [44] Movahhed, A., Shandiz, H. and Sani, S. (2016). Comparison of fractional order modelling and integer order modelling of fractional order buck converter in continuous condition mode operation, Advances in Electrical and Electronic Engineering: Power Engineering and Electrical Engineering 14(5): 531–542.
  • [45] Muñoz-Vázquez, A., Parra-Vega, V., Sánchez-Orta, A. and Martínez-Reyes, F. (2019). Robust Mittag-Leffler stabilisation of fractional-order systems, Asian Journal of Control, DOI: 10.1002/asjc.2195.
  • [46] Neçaibia, A. and Ladaci, S. (2014). Self-tuning fractional order PIλDμ controller based on extremum seeking approach, International Journal of Automation and Control 8(2): 99–121.
  • [47] Neçaibia, A., Ladaci, S., Charef, A. and Loiseau, J. (2015). Fractional order extremum seeking approach for maximum power point tracking of photo-voltaic panels, Frontiers in Energy 9(1): 43–53.
  • [48] Oustaloup, A. (1991). La commande CRONE, Hermès, Paris.
  • [49] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  • [50] Rihan, F. (2013). Numerical modeling of fractional-order biological systems, Abstract and Applied Analysis 2013(816803): 1–11, DOI: 10.1155/2013/816803.
  • [51] Sajewski, L. (2017). Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders, International Journal of Applied Mathematics and Computer Science 27(1): 33–41, DOI: 10.1515/amcs-2017-0003.
  • [52] Stiassnie, M. (1979). On the application of fractional calculus for the formulation of viscoelastic models, Applied Mathematical Modelling 3(4): 300-302.
  • [53] Ucar, E., Ozdemir, N. and Altun, E. (2019). Fractional order model of immune cells influenced by cancer cells, Mathematical Modelling of Natural Phenomena 14(308): 1–12.
  • [54] Vinagre, B., Petras, I., Podlubny, I. and Chen, Y. (2002). Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control, Nonlinear Dynamics 29(1–4): 269–279.
  • [55] Wang, J. (1987). Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, Journal of The Electrochemical Society 134(8): 1915––1920.
  • [56] Wei, Y., Sun, Z., Hu, Y. and Wang, Y. (2016). On fractional order composite model reference adaptive control, International Journal of Systems Science 47(11): 2521–2531.
  • [57] Yakoub, Z., Amairi, M., Chetoui, M., Saidi, B. and Aoun, M. (2015). Model-free adaptive fractional order control of stable linear time-varying systems, ISA Transactions 67: 193–207.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c2d42ec-78ef-43cb-8cd3-ce1bdabf4a73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.