PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dental pulp regeneration via dental pulp stem cells conditioned media and curcumin-loaded nanocomposite hydrogel: an in vitro and in vivo study

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dental pulp regeneration has emerged as a promising area of research in dentistry, aiming to restore damaged or diseased dental pulp, which is crucial for maintaining tooth vitality and function. There is a critical need to develop filler materials to treat dental pulp injuries. In the current research, we developed a nanocomposite delivery system for dental pulp stem cells (DPSCs) conditioned media and curcumin-loaded chitosan nanoparticles (CURCNPs) for treating dental pulp tissue injury in a rat model. The delivery system was biocompatible with DPSCs and protected them from oxidative stress. In addition, the developed nanocomposite hydrogel exhibited remarkable anti-inflammatory and anti-oxidative functions. An in vivo study showed that dental pulp tissues treated with hydrogels loaded with the conditioned media and CURCNPs had significantly higher healing activity than other groups. This healing effect was associated with the upregulation of VEGF and TGF-β and the downregulation of TNF-α and IL-6. In summary, our nanocomposite delivery system, integrating DPSCs conditioned media and CURCNPs, demonstrates promising biocompatibility and remarkable healing potential for treating dental pulp injuries, suggesting clinical applicability.
Wydawca
Rocznik
Strony
113--124
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • School of Stomatology, Xiamen University Xiamen, China
autor
  • Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamen, China
Bibliografia
  • [1] Cavalcanti BN, Zeitlin BD, Nör JE. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dent Mater. 2013;29(1):97–102. https://doi.org/10.1016/j.dental.2012.08.002
  • [2] Samiei M, et al. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. J Drug Deliv Sci Technol. 2021;64:102600. https://doi.org/10.1016/j.jdds t.2021.102600
  • [3] Galler KM, et al. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng Part A. 2012;18(1–2):176–184. https://doi.org/10.1089/ ten.tea.2011.0222
  • [4] Nuti N, et al. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12:511–523. https://doi.org/10.1007/s12015-016-9661-9
  • [5] Tsutsui TW. Dental pulp stem cells: advances to applications. Stem Cells Cloning. 2020:33–42.
  • [6] Nakashima M, et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:1–13. https://doi.org/10.1155/2018/8973613 https://doi.org/10.1186/s13287-017-0506-5
  • [7] Stanko P, et al. Dental mesenchymal stem/stromal cells and their exosomes. Stem Cells Int. 2018;2018. https://doi.org/10.1155/2018/8973613
  • [8] Jarmalaviciˇ ut¯ e A, et al. Exosomes from dental pulp ˙ stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine–induced apoptosis. Cytotherapy. 2015;17(7):932–939. https://doi.org/10.1016/j.jcyt.2 014.07.013
  • [9] Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods. 2017;6(10):92. https: //doi.org/10.3390/foods6100092
  • [10] Sinjari B, et al. Curcumin/liposome nanotechnology as delivery platform for anti-inflammatory activities via NFkB/ERK/pERK pathway in human dental pulp treated with 2-hydroxyethyl methacrylate (HEMA). Front Physiol. 2019;10:633. https://doi.org/10.3389/fphys.2019.00633
  • [11] Sethiya A, Agarwal DK, Agarwal S. Current trends in drug delivery system of curcumin and its therapeutic applications. Mini Rev Med Chem. 2020;20(13):1190– 1232. https://doi.org/10.2174/1389557520666200429103647
  • [12] Aibani N, et al. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13(10):1686. https://doi.org/10.3390/pharmaceutics13101686
  • [13] Hu Q, Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int J Biol Macromol. 2021;179:125–135. https://doi.org/10.1016/j.ijbiomac.2021.02.216
  • [14] de Souza Araújo IJ, et al. Dental pulp tissue regeneration, in Tissue Engineering. Elsevier; 2022. p. 313–346. https://doi.org/10.1590/S0103-64402011000100001
  • [15] Shi X, et al. Exosomes derived from human dental pulp stem cells increase flap survival with ischemia-reperfusion injuries. Regen Med. 2023;18(4):313–327. https://doi.org/10.2217/rme-2022-0206
  • [16] Purushothaman A, et al. Curcumin analogues with improved antioxidant properties: A theoretical exploration. Food Chem. 2022;373:131499. https://doi.org/10.1016/j.foodchem.2021.131499
  • [17] Lanza R, et al. Principles of tissue engineering. Academic Press; 2020.
  • [18] Calori IR, et al. Polymer scaffolds as drug delivery systems. Eur Polym J. 2020;129:109621. https://doi.org/10.1016/j.eurpolymj.2020.109621
  • [19] Urošević M, et al. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics (Basel). 2022;11(2):135. https://doi.org/10.3390/antibiotics11020135
  • [20] Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends Pharmacol Sci. 2020;41(9):653–664.
  • [21] Anderson S, Prateeksha P, Das H. Dental pulp-derived stem cells reduce inflammation, accelerate wound healing and mediate M2 polarization of myeloid cells. Biomedicines. 2022;10(8):1999. https://doi.org/10.1016/j.tips.2020.06.009
  • [22] Srivastava RM, et al. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol. 2011;11(3):331–341. https://doi.org/10.1016/j.intimp.2010.08.014
  • [23] Chamani S, et al. Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytother Res. 2022;36(4):1616–1632. https://doi.org/10.1002/ptr.7417
  • [24] Pan C, et al. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydr Polym. 2020;241:116349. ht tps://doi.org/10.1016/j.carbpol.2020.116349
  • [25] Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem. 2022;123(12):1938–1965. https://doi.org/10.1002/jcb.30344
  • [26] Bensimon-Brito A, et al. TGF-β signaling promotes tissue formation during cardiac valve regeneration in adult zebrafish. Dev Cell. 2020;52(1):9–20.e7. https://doi.org/10.1016/j.devcel.2019.10.027
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c2c5a52-54d0-417d-9014-af088d217b3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.