Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hemimorphite is a typical silicate zinc oxide mineral characterized by strong hydrophilicity and poor floatability. It is commonly recovered by the “sulfurization pretreatment-xanthate collector flotation” method. However, the Zn2+ in hemimorphite is blocked by SiO42-, making Zn-O bonds difficult to break and preventing the reaction between Zn2+ and S2- in solution. Therefore, enhancing sulfurization is essential for the flotation of hemimorphite. In this study, a microwave field was used for the first time to increase the surface sulfurization of hemimorphite, and the interactions between the minerals and collectors were increased by forming a sulfurization layer on the mineral surface to improve hemimorphite flotation. Compared with the conventional sulfurization pretreatment, microwave field sulfurization pretreatment exhibited better floatability under the same conditions, and the recovery reached 29.82%, which was much higher than that without microwave treatment. The mechanism of hemimorphite sulfurization in the microwave field was investigated with infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. These results indicated that the microwave field enhanced the surface sulfurization of hemimorphite, and increased the proportions of newly generated sulfides, thus boosting sulfurization flotation of hemimorphite.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. 200459
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- Longmen Laboratory, Luoyang, 471000, China
- State Key Laboratory of Mineral Processing, Beijing, 100160, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
autor
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
autor
- Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
autor
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
autor
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
autor
- Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
autor
- Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
autor
- Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
autor
- Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
autor
- China National Gold Group Co., Ltd, Beijing, 100011, PR China
Bibliografia
- ALGUACIL FJ, COBO A. 1998. Extraction of zinc from ammoniacal/ammonium sulphate solutions by LIX 54. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology 71: 162-66
- ANKLEKAR R, AGRAWAL D, ROY R. 2001. Microwave sintering and mechanical properties of PM copper steel. Powder Metallurgy 44: 355-62
- BEN SAID A, FRANCES F, GRANDJEAN A, LATRILLE C, FAURE S. 2019. Study of a foam flotation process assisted by cationic surfactant for the separation of soil clay particles: processing parameters and scaling-up sensitivity. Chemical Engineering and Processing-Process Intensification 142
- BUCHELNIKOV VD, LOUZGUINE-LUZGIN DV, ANZULEVICH AP, BYCHKOV IV, YOSHIKAWA N, et al. 2008. Modeling of microwave heating of metallic powders. Physica B-Condensed Matter 403: 4053-58
- CHEN AL, LI MC, QIAN Z, MA YT, CHE JY, MA YL. 2016. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction. Jom 68: 2688-97
- DAKE LS, BAER DR, ZACHARA JM. 1989. Auger parameter measurements of zinc-compounds relevant to zinc transport in the environment. Surface and Interface Analysis 14: 71-75
- EJTEMAEI M, GHARABAGHI M, IRANNAJAD M. 2014. A review of zinc oxide mineral beneficiation using flotation method. Advances in Colloid and Interface Science 206: 68-78
- EJTEMAEI M, IRANNAJAD M, GHARABAGHI M. 2011. Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors. Minerals Engineering 24: 1402-08
- FAKHRI M, JAVADI S, NOROUZI MA, BAHMAI BB, KARIMI MM. 2023. The Induced Heating–Healing of Inductive Warm-Mix Asphalt Mixture Containing Copper-Slag Filler. Journal of Materials in Civil Engineering 35: 04023039
- FENG Q, ZHAO G, ZHANG G, ZHAO W, HAN G. 2022. Effect of ferric ions on surface sulfidization of hemimorphite and implications for xanthate adsorption. Journal of Molecular Liquids 360: 119486
- FENG QC, WEN SM, ZHAO WJ, CHEN HT. 2018. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation. Separation and Purification Technology 206: 239-46
- GAO P-C, WANG H-G, PEI K-M, ZHENG X. 2007. A distorted geometry of methyl xanthate anion in S3 state—Resonance Raman and ab initio studies. Chemical Physics Letters 445: 173-78
- HAQUE KE. 1999. Microwave energy for mineral treatment processes—a brief review. International journal of mineral processing 57: 1-24
- HE Y, SHIFLET G, POON S. 1995. Ball milling-induced nanocrystal formation in aluminum-based metallic glasses. Acta metallurgica et materialia 43: 83-91
- INOUE A. 1998. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Progress in Materials Science 43: 365-520
- IRANNAJAD M, EJTEMAEI M, GHARABAGHI M. 2009. The effect of reagents on selective flotation of smithsonite– calcite–quartz. Minerals Engineering 22: 766-71
- JIA K, FENG QM, ZHANG GF, SHI Q, CHANG ZY. 2017. Understanding the roles of Na2S and Pb(II)in the flotation of hemimorphite. Minerals Engineering 111: 167-73
- JIAN Z, XUE-HUI Y, JUN X, JING-LIN Y, XUAN-XUE M. 2009. In-situ Test and Study on the Hemimorphite and It's Thermal Phase Transformation by Technology of High Temperature Raman Spectra. Geoscience 23: 1064
- KASHANI AN, RASHCHI F. 2008. Separation of oxidized zinc minerals from tailings: Influence of flotation reagents. Minerals Engineering 21: 967-72
- KAZAK O, TOR A. 2022. Characteristics and mechanisms for highly efficient adsorption of Pb(II) from aqueous solutions by engineered vinasse biochar with cold oxygen plasma process. Chemical Engineering and Processing-Process Intensification 171
- KITCHEN HJ, VALLANCE SR, KENNEDY JL, TAPIA-RUIZ N, CARASSITI L, et al. 2014. Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing. Chemical reviews 114: 1170-206
- LANGER D, VESELY C. 1970. Electronic core levels of zinc chalcogenides. Physical Review B 2: 4885
- LI CX, WEI C, DENG ZG, LI MT, LI XB, XU HS. 2013. 2nd International Conference on Chemical, Material and Metallurgical Engineering (ICCMME 2012), Kunming, PRC, 2012, 634-638: 106-11.
- LIU C, ZHU G, SONG S, LI H. 2019. Flotation separation of smithsonite from quartz using calcium lignosulphonate as a depressant and sodium oleate as a collector. Minerals Engineering 131: 385-91
- LIU ZY, LIU ZH, LI QH, YANG TZ, ZHANG X. 2012. Leaching of hemimorphite in NH3-(NH4)(2)SO4-H2O system and its mechanism. Hydrometallurgy 125: 137-43
- MARABINI A, ALESSE V, GARBASSI F. 1984. Role of sodium sulphide, xanthate and amine in flotation of lead-zinc oxidized ores. Inst of Mining & Metallurgy: 125-36
- MEDAS D, PODDA F, MENEGHINI C, DE GIUDICI G. 2017. Stability of biological and inorganic hemimorphite: implications for hemimorphite precipitation in non-sulfide Zn deposits. Ore Geology Reviews 89: 808-21
- MEHDILO A, IRANNAJAD M, ZAREI H. 2014. Smithsonite flotation from zinc oxide ore using alkyl amine acetate collectors. Separation Science and Technology 49: 445-57
- MENÉNDEZ J, ARENILLAS A, FIDALGO B, FERNÁNDEZ Y, ZUBIZARRETA L, et al. 2010. Microwave heating processes involving carbon materials. Fuel Processing Technology 91: 1-8
- MOU Q-Y, LI X-J. 2004. Applications of microwave heating technology. PHYSICS-BEIJING- 33: 438-42
- NORAMBUENA-CONTRERAS J, GONZÁLEZ A, CONCHA J, GONZALEZ-TORRE I, SCHLANGEN E. 2018. Effect of metallic waste addition on the electrical, thermophysical and microwave crack-healing properties of asphalt mixtures. Construction and Building Materials 187: 1039-50
- RATH R, SUBRAMANIAN S, PRADEEP T. 2000. Surface chemical studies on pyrite in the presence of polysaccharidebased flotation depressants. Journal of Colloid and Interface Science 229: 82-91
- SAFARI V, ARZPEYMA G, RASHCHI F, MOSTOUFI N. 2009. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica. International Journal of Mineral Processing 93: 79-83
- SALUM M, DE ARAUJO A, PERES A. 1992. The role of sodium sulphide in amine flotation of silicate zinc minerals. Minerals Engineering 5: 411-19
- SETHURAJAN M, HUGUENOT D, JAIN R, LENS PN, HORN HA, et al. 2017. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. Journal of Hazardous Materials 324: 71-82
- SHEN XJ, GAO X, ZHANG SY, WANG C. 2024. Experimental study of low temperature plasma synergistic catalyst for treatment of DEP in water. Chemical Engineering and Processing-Process Intensification 203
- SONG Z, JING C, YAO L, ZHAO X, WANG W, et al. 2016. Microwave drying performance of single-particle coal slime and energy consumption analyses. Fuel Processing Technology 143: 69-78
- STROHMEIER BR, HERCULES DM. 1984. Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina. Journal of Catalysis 86: 266-79
- SUN J, WANG W, YUE Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials (Basel). 9 (2016).
- WU DD, WEN SM, DENG JS, LIU J, MAO YB. 2015. Study on the sulfidation behavior of smithsonite. Applied Surface Science 329: 315-20
- XU J, MAO H, SUN Y, DU Y. 1997. Surface vibrational mode of ZnS nanoparticles. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 15: 1465- 67
- YU XR, LIU F, WANG ZY, CHEN Y. 1990. Auger parameters for sulfur-containing-compounds using a mixed aluminum silver excitation source. Journal of Electron Spectroscopy and Related Phenomena 50: 159-66
- YU Y-M, NAM S, BYUNGSUNG O, LEE K-S, CHOI YD, et al. 2003. Resonant Raman scattering in ZnS epilayers. Materials chemistry and physics 78: 149-53
- ZHANG S, XIAN Y, WEN S, LIANG G. 2022. Enhancement of xanthate adsorption on lead-modified and sulfurized smithsonite surface in the presence of ammonia. Minerals Engineering 189: 107872
- ZHANG Y, CAO Z, CAO Y, SUN C. 2013a. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces. Journal of Molecular Structure 1048: 434-40
- ZHANG Y, R NAYAK T, HONG H, CAI W. 2013b. Biomedical applications of zinc oxide nanomaterials. Current molecular medicine 13: 1633-45
- ZHAO W, WANG M, YANG B, FENG Q, LIU D. 2022. Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper–ammonium species. Minerals Engineering 187: 107796
- ZHAO WJ, LIU DW, WEN SM, FENG QC. 2019. Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption. Applied Surface Science 483: 849-58
- ZUO Q, YANG J, SHI YF, WU DD. 2020. Activating hemimorphite using a sulfidation-flotation process with sodium sulfosalicylate as the complexing agent. Journal of Materials Research and Technology, 9: 10110-20
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c2afa91-417b-446e-9c48-07bfebc928ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.