Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The estimation of non-stationary random medium parameters is the key to the application of random medium theory in fine seismic exploration. We propose a method for estimating non-stationary random medium parameters from partially stacked seismic data. To begin with, the relationship between seismic data and random medium p-wave velocity, s-wave velocity, density model in random medium is described, and the principle and method of estimating the parameters of autocorrelation function of random medium are introduced in this paper. Subsequently, the specific steps of applying the power spectrum method for non-stationary random media parameter estimation are also presented. The feasibility and correctness of the method are verified through the estimation test of the two-dimensional theoretical model. Eventually, the estimation test of non-stationary random medium parameters is carried out by field seismic data. The results show that the non-stationary random medium parameters can better describe the elastic parameter information of the subsurface media and provide a reference for the initial model construction of the elastic parameters, reflecting that the method has good application prospects. Compared with previous studies, this method extends the random medium parameter estimation from stationary to non-stationary and from single wave impedance random medium parameter to multi-elastic parameter random medium parameters. It provides a basis for the in-depth application of random media theory in field data. Meanwhile, this estimation method based on the power spectrum method has the advantage of being intuitive and easy to interpret. However, there are also problems in smoothing effect, which needs further improvement and refinement.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2119--2133
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
autor
- College of Geophysics, China University of Petroleum (Beijing), Beijing 102249, China
autor
- Shenzhen Branch, CNOOC(China) Co. Ltd, Shenzhen 518067, China
autor
- School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
Bibliografia
- 1. Aki K (1969) Analysis of the seismic coda of local earthquakes as scattered waves. J Geophys Res 74(2):615–631. https://doi.org/10.1029/jb074i002p00615
- 2. Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data—Part II: fractured models with orthorhombic symmetry. Geophysics 65(6):1803–1817. https://doi.org/10.1190/1.1444864
- 3. Connolly P (1999) Elastic Impedance. Lead Edge 18(4):438–452. https://doi.org/10.1190/1.1438307
- 4. Gibson BS (1991) Analysis of lateral coherency in wide-angle seismic images of heterogeneous targets. J Geophys Res Solid Earth 96(B6):10261–10273. https://doi.org/10.1029/91jb00340
- 5. Gu Y, Zhu PM, Li H, Li XY (2014) Stationary random medium parameter estimation of two-dimensional post-stack seismic data. Chinese J Geophys 57(7):2291–2301. https://doi.org/10.1002/cjg2.20116
- 6. Gu Y (2013) Numerical modeling and parameter estimation for 3D non-stationary random medium. Dissertation, China University of Geosciences
- 7. Hurich CA, Kocurko A (2000) Statistical approaches to interpretation of seismic reflection data. Tectonophysics 329(1):251–267. https://doi.org/10.1016/s0040-1951(00)00198-0
- 8. Ikelle L, Yung S, Daube F (1993) 2-D random media with ellipsoidal autocorrelation functions. Geophysics 58(9):1359–1372. https://doi.org/10.1190/1.1443518
- 9. Irving J, Knight R, Holliger K (2009) Estimation of the lateral correlation structure of subsurface water content from surface-based ground-penetrating radar reflection images. Water Resour Res 45(12):1–14. https://doi.org/10.1029/2008wr007471
- 10. Jeulin D (2021) Dead leaves models: from space tessellations to random functions. Morphol Models Random Struct 53:329–418. https://doi.org/10.1007/978-3-030-75452-5_11
- 11. Litwiniszyn J (1956) Application of the equation of stochastic processes to spatial problems of mechanics of some types of bodies. Bulletin De L’academie Polonaise Des Sciences 4(2):91–95
- 12. Martin GS, Wiley R, Marfurt KJ (2006) Marmousi2: An elastic upgrade for Marmousi. Lead Edge 25(2):156–166. https://doi.org/10.1190/1.2172306
- 13. Meng X, Wang S, Tang G, Li J, Sun C (2017) Stochastic parameter estimation of heterogeneity from crosswell seismic data based on the Monte Carlo radiative transfer theory. J Geophys Eng 14(3):621–633. https://doi.org/10.1088/1742-2140/aa6130
- 14. Poppeliers C (2007) Estimating vertical stochastic scale parameters from seismic reflection data: deconvolution with non-white reflectivity. Geophys J Int 168(2):769–778. https://doi.org/10.1111/j.1365-246x.2006.03239.x
- 15. Saito T, Sato H, Ohtake M (2002) Envelope broadening of spherically outgoing waves in three-dimensional random media having power law spectra. J Geophys Res Solid Earth. https://doi.org/10.1029/2001jb000264
- 16. Scholer M, Irving J, Holliger K (2010) Estimation of the correlation structure of crustal velocity heterogeneity from seismic reflection data. Geophys J Int 183(3):1408–1428. https://doi.org/10.1111/j.1365-246x.2010.04793.x
- 17. Strube HW (1985) A generalization of correlation functions and the Wiener-Khinchin theorem. Signal Process 8(1):63–74. https://doi.org/10.1016/0165-1684(85)90089-1
- 18. Xi X, Yao Y (2001) 2-D random media and wave equation forward modeling. Oil Geophys Prospect 36(5):546–552
- 19. Xi X, Yao Y (2002) Simulations of random medium model and intermixed random medium. J China Univ Geosci 27(1):67–71
- 20. Xi X, Yao Y (2005) Non-stationary random medium model. Oil Geophys Prospect 40(1):71–75
- 21. Yan F, Han DH (2018) Accuracy and sensitivity analysis on seismic anisotropy parameter estimation. J Geophys Eng 15(2):539–553. https://doi.org/10.1088/1742-2140/aa93b1
- 22. Yang XW, Zhu PM (2017) Stochastic seismic inversion based on an improved local gradual deformation method. Comput Geosci 109:75–86. https://doi.org/10.1016/j.cageo.2017.08.010
- 23. Yang XW, Mao NB, Zhu PM, Xiao D (2020) Two-level uncertainty assessment in stochastic seismic inversion based on the gradual deformation method. Geophysics 85(4):M33–M42. https://doi.org/10.1190/geo2019-0492.1
- 24. Yong F, Lu QT, Feng J, Zhang J, Luo SY (2021) Estimation of lateral correlation length from deep seismic reflection profile based on stochastic model. Acta Geophys 69(4):1297–1312. https://doi.org/10.1007/s11600-021-00626-1
- 25. Zhang L, Xu Y, Zeng Z, Li J, Zhang D (2021) Simulation of martian near-surface structure and imaging of future GPR data from Mars. IEEE Trans Geosci Remote Sens 21:1–11. https://doi.org/10.1109/tgrs.2021.3074029
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c26c2e4-2392-44c9-b83c-0b8ded8ac0c8