Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper, the extended finite element method (XFEM) is combined with a recovery procedure in the analysis of the discontinuous Poisson problem. The model considers the weak as well as the strong discontinuity. Computationally efficient low-order finite elements provided good convergence are used. The combination of the XFEM with a recovery procedure allows for optimal convergence rates in the gradient i.e. as the same order as the primary solution. The discontinuity is modelled independently of the finite element mesh using a step-enrichment and level set approach. The results show improved gradient prediction locally for the interface element and globally for the entire domain.
Wydawca
Czasopismo
Rocznik
Tom
Strony
25--37
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
- Faculty of Management and Computer Modelling, Kielce University of Technology, Kielce, Poland
Bibliografia
- [1] P. Stąpór. An improved XFEM for the Poisson equation with discontinuous coefficients. Archive of Mechanical Engineering, 64(1):123–144, 2017. doi: 10.1515/meceng-2017-0008.
- [2] T. Grätsch and K.-J. Bathe. A posteriori error estimation techniques in practical finite element analysis. Computers & Structures, 83(4-5):235–265, 2005. doi: 10.1016/j.compstruc.2004.08.011.
- [3] M. Ainsworth and J.T. Oden. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1–88, 1997. doi: 10.1016/S0045-7825(96)01107-3.
- [4] P.J. Payen and K.-J. Bathe. A stress improvement procedure. Computers & Structures, 112-113:311–326, 2012. doi: 10.1016/j.compstruc.2012.07.006.
- [5] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5):601–620, 1999. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
- [6] P. Stąpór. Application of XFEM with shifted-basis approximation to computation of stress intensity factors. The Archive of Mechanical Engineering, 58(4):447–483, 2011. doi: 10.2478/v10180-011-0028-0.
- [7] D. Belsley, R.E. Welsch, and E. Kuh. The Condition Number. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. John Wiley & Sons, Inc., Hoboken, New Jersey, 1980.
- [8] S. Hou and X.-D. Liu. A numerical method for solving variable coeffiecient elliptic equation with interfaces. Journal of Computational Physics, 202(2):411–445, 2005. doi: 10.1016/j.jcp.2004.07.016.
Uwagi
EN
1. This work was financially supported by Polish National Science Center (grant number 2017/01/X/ST1/00571). 2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c1f48cb-c603-4e8f-8c29-06d8c0f45b18