PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Visual analysis of heat transport in a unique object

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a visual analysis of heat propagation in selected elements of a unique building structure. Numerous spots of construction deterioration and weakening are exemplary to the presented method and to the procedure of concluding for the purpose of combined research and education at the third academic level of education. The described procedures use a thermographic camera. The most attention has been put to thermal bridges to avoid energy loss in further modernization of the investigated object and how the conclusion process can be supported. The discussion is based on four parallel types of camera imaging: thermal, multispectral, thermal fusion and digital. The selected important aspects of measurement conditions have been discussed to justify the reliability of presented measurements.
Słowa kluczowe
Twórcy
  • Fundamentals of Technology Faculty, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
  • Fundamentals of Technology Faculty, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Albatici R., Tonelli A.M., Chiogna M., A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Applied Energy, 141(1), 2015, 218–228, http://dx.doi. org/10.1016/j.apenergy.2014.12.035.
  • 2. Kylili A., Fokaides P.A., Christou P., Kalogirou S.A., Infrared thermography (IRT) applications for building diagnostics: A review. Applied Energy, 134(12), 2014, 531–549, http://dx.doi. org/10.1016/j.apenergy.2014.08.005.
  • 3. Lehmann B., Wakili K.G., Frank Th., Collado B.V., Tanner Ch., Effects of individual climatic parameters on the infrared thermography of buildings. Applied Energy, 110(10), 2013, 29–43, http:// dx.doi.org/10.1016/j.apenergy.2013.03.066.
  • 4. Ohlsson K.E.A., Olofsson T., Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface. Applied Energy, 134(12), 2014, 499–505, http://dx.doi. org/10.1016/j.apenergy.2014.08.058.
  • 5. Wai-Lok L.W., Ka-Kin L., Chi-Sun P., Validation of size estimation of debonds in external wall’s composite finishes via passive Infrared thermography and a gradient algorithm. Construction and Building Materials, 87(7), 2015, 113–124, http:// dx.doi.org/10.1016/j.conbuildmat.2015.03.032.
  • 6. Zou H., Huang F., A novel intelligent fault diagnosis method for electrical equipment using infrared thermography. Infrared Physics and Technology, 73(11), 2015, 29–35, http://dx.doi.org/10.1016/j. infrared.2015.08.019.
  • 7. FLIR System, Inc., User’s manual Flir R&D Software 3.3, 2014, 80–84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c18be22-85cb-4c8d-8a64-720f16550b64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.