PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of local and modal based active vibration control strategies on the example of an elastic system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, feed axes are often equipped with multiple parallel-acting actuators in order to increase the dynamics of the machine tool. Also, additional actuators for active damping are widely used. Normally, the drives or actuators are controlled independently without consideration for the impact on each other. In contrast, by using the modal space control, the system can be decoupled and the modal control loops can be adjusted independently. This control approach is particularly suitable for motion systems, such as machine tools, which have more drives or actuators than degrees of freedom of movement. This paper deals with the pre-investigation of the modal-based vibration control for machine tools with additional actuators. The object of investigation is an elastic system with a movable saddle. The modal-based control is compared with a local control approach. The results obtained experimentally on the test rig are presented. The modal control is superior since, with the modal approach, each control loop corresponds to a specific vibration mode, and the control law for this loop is designed to provide the desired performance of the control system at the corresponding resonance frequency. The parameterisation of the control loops is simplified by modal control, since the modes can be controlled independently.
Rocznik
Strony
32--45
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
autor
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
autor
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
  • Technische Universität Dresden, Faculty of Mechanical Science and Engineering, Institute of Mechatronic Engineering, Chair of Machine Tools Development and Adaptive Controls, Dresden, Germany
  • Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany
Bibliografia
  • [1] PEUKERT C., MERX M., MÜLLER J., IHLENFELDT S., 2017, Flexible coupling of drive and guide elements for parallel-driven feed axes to increase dynamics and accuracy of motion, Journal of Machine Engineering, 17/2, 77–89.
  • [2] MERX M., PEUKERT C., MÜLLER J., IHLENFELDT S., 2017, Kinematically Coupled Force-Compensation – experimental and simulative investigation with a highly dynamic test bed, In: SCHMIDT R. (ed.), SCHUH G. (ed.), 7th WGP-Jahreskongress 2017, Aachen, 383–390.
  • [3] IHLENFELDT S., MÜLLER J., MERX M., PEUKERT C., 2018, A Novel concept for highly dynamic over-actuated lightweight machine tools, In: YAN X. (ed.), BRADLEY D. (ed.), MOORE P. (ed.), Reinventing Mechatronics, Proceedings of Mechatronics, Glasgow, 210–216.
  • [4] KROLL L., BLAU P., WABNER M., FRIEβ U., EULITZ J., KLÄRNER M., 2011, Lightweight components for energy-efficient machine tools, CIRP Journal of Manufacturing Science and Technology, 4/2, 148–160.
  • [5] MÖHRING H.-C., BRECHER C., ABELE E., FLEISCHER J., BLEICHER F., 2015, Materials in machine tool structures, CIRP Annals – Manufacturing Technology, 64/2, 725–748.
  • [6] HESSELBACH J., 2011, Adaptronik für Werkzeugmaschinen: Forschung in Deutschland (Berichte aus dem Maschinenbau).
  • [7] ALTINTAS Y., WECK M., 2004, Chatter stability of metal cutting and grinding, CIRP Annals – Manufacturing Technology, 53/2, 619–642.
  • [8] LÖSER M., OTTO A., IHLENFELDT S., RADONS G., 2018, Chatter prediction for uncertain parameters, Advances in Manufacturing, 6/3, 310–333.
  • [9] BRECHER C., BAUMLER S., BROCKMANN B., 2013, Avoiding chatter by means of active damping systems for machine tools, Journal of Machine Engineering, 13/3, 117–128.
  • [10] LAW M., WABNER M., FRIESS U., IHLENFELDT S., 2014, Improving machining performance of in-use machine tools with active damping devices, 3rd International Chemnitz Manufacturing Colloquium ICMC 2014, Chemnitz, 393–412.
  • [11] LOPEZ DE LACALLE N., LAMIKIZ A., 2009, Machine Tools for Removal Processes: A General View, Machine Tools for High Performance Machining, 1–45.
  • [12] SIMNOFSKE M., HESSELBACH J., 2006, The increase of the dynamic and static stiffness of a grinding machine, ASME, 30th Annual Mechanisms and Robotics Conference, Philadelphia, 2, 23–30.
  • [13] DENKENA B., GÜMMER O., 2012, Process stabilization with an adaptronic spindle system, Production Engineering, 6/4-5, 485–492.
  • [14] KRAS A., BOURGAIN F., CLAEYSSEN F., 2014, Amplified piezo actuator APA® with viscoelastic material for machine tool semi-active damping system, Journal of Machine Engineering, 14/3, 83–96.
  • [15] SINGER N.C., SEERING W.P., 1990, Preshaping command inputs to reduce system vibration, Journal of Dynamic Systems, Measurement, and Control, 112/1, 76–82.
  • [16] PEREIRA E., TRAPERO J.R., DÍAZ I.M., FELIU V, 2012, Adaptive input shaping for single-link flexible manipulators using an algebraic identification, Control Engineering Practice, 20/2, 138–147.
  • [17] ZHANG Q., LI C., ZHANG J., JIN J., 2016, Active vibration control and coupled vibration analysis of a parallel manipulator with multiple flexible links, Shock and Vibration, Article number 7474085.
  • [18] MEIROVITCH L., BARUH H., ÖZ H., 1983, A Comparison of control techniques for large flexible systems, Journal of Guidance, Control, and Dynamics, 6/4, 302–310.
  • [19] BALAS M.J., 1978, Active control of flexible systems, Journal of Optimization Theory and Applications, 25/3, 415–436.
  • [20] MEIROVITCH L., BARUH H., 1983, On the problem of observation spillover in self-adjoint distributed-parameter systems, Journal of Optimization Theory and Applications, 39/2, 269–291.
  • [21] INMAN D. J., 2001, Active modal control for smart structures, Philosophical Transactions of the Royal Society, 359, 205–219.
  • [22] SKIDMORE G.R., HALLAUER JR.W.L., 1985, Modal-Space active damping of a beam-cable structure: theory and experiment, Journal of Sound and Vibration, 101/2, 149–160.
  • [23] KHULIEF Y.A., 2001, Active modal control of vibrations in elastic structures in the presence of material damping, Computer Methods in Applied Mechanics and Engineering, 190/51–52, 6947–6961.
  • [24] LINDBERG R.E., LONGMAN R.W., 1984, On the number and placement of actuators for independent modal space control, Journal of Guidance, Control, and Dynamics, 7/2, 215–221.
  • [25] BAZ A., POH S., 1990, Experimental implementation of the modified independent modal space control method, Journal of Sound and Vibration, 139/1, 133–149.
  • [26] BELYAEV A.K., FEDOTOV A.V., IRSCHIK H., NADER M., POLYANSKIY V.A., SMIRNOVA N.A., 2017, Experimental study of local and modal approaches to active vibration control of elastic systems, Structure Control & Health Monitoring, 25/2.
  • [27] RESTA F., RIPAMONTI F., CAZZULANI G., FERRARI M., 2010, Independent modal control for nonlinear flexible structures: An experimental test rig, Journal of Sound and Vibration, 329/8, 961–972.
  • [28] ZHANG Q., JIN J., ZHANG J., ZHAO C., 2014, Active vibration suppression of a 3-DOF flexible parallel manipulator using Efficient Modal Control, Shock and Vibration, Article number 953694.
  • [29] SCHAECHTER D.B., Optimal local Control of Flexible Structures, 1981, Journal of Guidance, Control, and Dynamics, 4/1, 22–26.
  • [30] GINSBERG J.H., 2001, Mechanical and structural vibrations: theory and applications, Wiley, 704.
  • [31] MEIROVITCH L., BARUH H., 1985, The implementation of modal filters for control of structures, Journal of Guidance, Control, and Dynamics, 8/6, 707–716.
  • [32] BRAGHIN F., CINQUEMANI S., RESTA F., 2012, A new approach to the synthesis of modal control laws in active structural vibration control, Journal of Vibration and Control, 19/2, 163–182.
  • [33] CAZZULANI G., RESTA F., RIPAMONTI F., ZANZI R., 2012, Negative derivative feedback for vibration control of flexible structures, Smart Materials and Structures, 21, 075024.
  • [34] PREUMONT A., 2011, Vibration control of active structures: an introduction, Solid Mechanics and Its Applications, DOI: 10.1007/978-94-007-2033-6.
  • [35] FANSON J. L., CAUGHEY T. K., 1990, Positive position feedback control for large space structures, AIAA Journal, 28/4, 717–724.
  • [36] GOH C.J., CAUGHEY T.K., 1985, On the stability problem caused by finite actuator dynamics in the collocated control of large space structures, International Journal of Control, 41/3; 787–802.
  • [37] KIM S.-M., WANG S., BRENNAN M.J., 2011, Comparison of negative and positive position feedback control of a flexible structure, Smart Materials and Structures, 20, 015011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c16764c-bbe3-4b5c-bdff-578aee6b492c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.