PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tensile and flexural moduli for human orbital wall bones - comparative study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aims of the current research were: (1) to analyze in detail the tensile modulus and ultimate tensile strength (UTS) of orbital wall bones separately for the left and right orbit of the same cadaver and (2) to compare the obtained results with a flexural modulus of the left and right orbit reported earlier by A. C. van Leeuwen et al. [14]. A set of 54 specimens of orbital superior and/or medial walls harvested from 16 human skulls (4 female, 12 male) were tensioned at 0.01 mm/s till fracture. The samples were taken always from both orbits of the same cadaver. For each sample, cross-section area, apparent density, tensile modulus, and UTS were identified. For pooled female and male group apparent density for right and left orbit was identified to be 1.59 (± 0,52 SD) g/cm3 and 1.51 (± 0.48 SD) g/cm3 , tensile modulus 2028 (± 1729 SD) MPa and 2706 (± 2812 SD) MPa, and UTS 14.17 (± 15.00 SD) MPa and 15.03 (± 11.44 SD) MPa, respectively. For tensile tests, there were no statistical differences between the left and right orbit for pooled male and female groups for (a) apparent density (T-Student test p=0.567), (b) UTS (Mann-Whitney U-test p=0.350) and (c) tensile modulus (Mann-Whitney U-test p=0.716). For bending tests, there were no statistical differences between the left and right orbit for the pooled male and female group for (a) orbital wall thickness (T-Student test p=0.811) and (b) flexural modulus (Mann-Whitney Utest p=0.206). The comparative analysis between tensile and flexural moduli for pooled left and right groups (with no distinction for male and female) revealed no statistically significant difference (Mann-Whitney U-test p=0.074). The maximum tensile modulus was 7279 MPa and 9913 MPa for the right and left orbit, respectively, and was similar to the maximum flexural modulus of 6870 MPa and 9170 MPa reported in an earlier study, for the right and left orbit, respectively.
Rocznik
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Developmental Neurology, Medical University of Gdansk, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
  • Departament of Otolaryngology Copernicus Hospital, Department of Otolaryngology, Medical University of Gdansk, Gdansk, Poland
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • 1 ASSOCIATION WM, World Medical Association declaration of Helsinki: Ethical principles for medical research involving human subjects,. JAMA - J. Am. Med. Assoc. 310:2191–2194.
  • 2 AUPERRIN A, DELILLE R, LESUEUR D, BRUYÈRE K, MASSON C, DRAZÉTIC P, Geometrical and material parameters to assess the macroscopic mechanical behaviour of fresh cranial bone samples, J Biomech, 2014, 47, 1180–1185.
  • 3 BRUNZINII A, MANDOLINII M, MANIERII S, GENNANII M, MAZZOLI A, PAGNONI M, IANNETTI G, MODUGN A, Orbital wall reconstruction by selective laser sintered mould, 2017, 260–264.
  • 4 CHEPURNYI Y, CHERNOGORSKYI D, PETRENKO O, KOPCHAK A, Reconstruction of Post-Traumatic Orbital Defects and Deformities with Custom-Made Patient-Specific Implants: Evaluation of the Efficacy and Clinical Outcome, Craniomaxillofacial Trauma Reconstr Open, 2019, 3, 0039–1685505.
  • 5 CHIANG E, SAADAT L V., SPITZ JA, BRYAR PJ, CHAMBERS CB, Etiology of orbital fractures at a level I trauma center in a large metropolitan city, Taiwan J Ophthalmol, 2016, 6, 26–31.
  • 6 CHOU C, KUO YR, CHEN CC, LAI CS, LIN SD, HUANG SH, LEE SS, Medial orbital wall reconstruction with porous polyethylene by using a transconjunctival approach with a caruncular extension, Ann Plast Surg, 2017, 78, S89–S94.
  • 7 FAVIER V, GALLET P, SUBSOL G, CAPTIER G, Understanding the biomechanical properties of skull base tissues is essential for the future of virtual reality endoscopic sinus and skull base surgery simulators, Clin Exp Otorhinolaryngol, 2019, 12, 231–232.
  • 8 GUNARAJAH DR, SAMMAN N, Biomaterials for repair of orbital floor blowout fractures: A systematic review, J Oral Maxillofac Surg, 2013, 71, 550–570.
  • 9 HEO JJ, CHONG J-H, HAN JJ, JUNG S, KOOK M-S, OH H-K, PARK H-J, Reconstruction of the orbital wall using superior orbital rim osteotomy in a patient with a superior orbital wall fracture, Maxillofac Plast Reconstr Surg, 2018, 40, 1–5.
  • 10 KANG S, KWON J, AHN CJ, ESMAELI B, KIM GB, KIM N, SA HS, Generation of customized orbital implant templates using 3-dimensional printing for orbital wall reconstruction, Eye, 2018, 32, 1864–1870.
  • 11 KIM DH, KIM Y, PARK JS, KIM SW, Virtual reality simulators for endoscopic sinus and skull base surgery: The present and future, Clin Exp Otorhinolaryngol, 2019, 12, 12–17.
  • 12 KOBERDA M, SKOREK A, KŁOSOWSKI P, ŻMUDA-TRZEBIATOWSKI M, ŻERDZICKI K, LEMSKI P, STODOLSKA-KOBERDA U, Numerical and Clinical Analysis of an Eyeball Injuries Under Direct Impact, Int J Occup Med Environ Health, 2023, 36, 263–273.
  • 13 LARYSZ D, WOLAŃSKI W, KAWLEWSKA E, MANDERA M, GZIK M, Biomechanical aspects of preoperative planning of skull correction in children with craniosynostosis, Acta Bioeng Biomech, 2012, 14, 19–26.
  • 14 VAN LEEUWEN AC, ONG SH, VISSINK A, GRIJPMA DW, BOS RRM, Reconstruction of orbital wall defects: Recommendations based on a mathematical model, Exp Eye Res, 2012, 97, 10–18.
  • 15 MAZUMDER MMG, MILLER K, BUNT S, MOSTAYED A,JOLDES G, DAY R, HART R, WITTEK A, Mechanical properties of the brain-skull interface, Acta Bioeng Biomech, 2013, 15, 3–11.
  • 16 MORGAN EF, BAYRAKTAR HH, KEAVENY TM, Trabecular bone modulus-density relationships depend on anatomic site, J Biomech, 2003, 36, 897–904.
  • 17 MOTHERWAY JA, VERSCHUEREN P, VAN DER PERRE G, VANDER SLOTEN J, GILCHRIST MD, The mechanical properties of cranial bone: The effect of loading rate and cranial sampling position, J Biomech, 2009, 42, 2129–2135.
  • 18 NAGASAO T, MIYAMOTO J, SHIMIZU Y,JIANG H, NAKAJIMA T, What happens between pure hydraulic and buckling mechanisms of blowout fractures?, J Cranio-Maxillofacial Surg, 2010, 38, 306–313.
  • 19 REITER MJ, SCHWOPE RB, THELER JM, Postoperative CT of the orbital skeleton after trauma: Review of normal appearances and common complications, Am J Roentgenol, 2016, 206, 1276–1285.
  • 20 SCHALLER A, HUEMPFNER-HIERL H, HEMPRICH A, HIERL T, Biomechanical mechanisms of orbital wall fractures - A transient finite element analysis, J Cranio-Maxillofacial Surg, 2013, 41, 710–717.
  • 21 SEONG WJ, KIM UK, SWIFT JQ, HEO YC, HODGES JS, KO CC, Elastic properties and apparent density of human edentulous maxilla and mandible, Int J Oral Maxillofac Surg, 2009, 38, 1088–1093.
  • 22 ŚRÓDKA W, Effect of kinematic boundary conditions on optical and biomechanical behaviour of eyeball model, Acta Bioeng Biomech, 2006, 8, 69–77.
  • 23 UNION TEP AND THE C OF THE E, DIRECTIVE 2004/23/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells, Off J Eur Union, 2004, 48–58.
  • 24 VERSCHUEREN P, DELYE H, BERCKMANS D, VERPOEST I, GOFFIN J, VANDER SLOTEN J, VAN DER PERRE G, Analysis of fracture characteristics of cranial bone for Fe modelling, Int Res Counc Biomech Impact - 2006 Int IRCOBI Conf Biomech Impact, Proc, 2006, 357–360.
  • 25 YE L-X, SUN X-M, ZHANG Y-G, ZHANG Y, Materials to facilitate orbital reconstruction and soft tissue filling in posttraumatic orbital deformaties, Plast Aesthetic Res, 2016, 3, 86.
  • 26 ZERDZICKI K, LEMSKI P, KLOSOWSKI P, SKOREK A, TRZEBIATOWSKI MZ, KOBERDA M, Tensile modulus of human orbital wall bones cut in sagittal and coronal planes, PLoS One, 2021, 16, 1–15.
  • 27 ZMUDA TRZEBIATOWSKI MA, KŁOSOWSKI P, SKOREK A, ŻERDZICKI K, LEMSKI P, KOBERDA M, Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit, Sci Rep, 2020, 10, 1–13.
  • 28 ZMUDA TRZEBIATOWSKI MA, KŁOSOWSKI P, SKOREK A, ŻERDZICKI K, LEMSKI P, KOBERDA M, Validation of Hydraulic Mechanism during Blowout Trauma of Human Orbit Depending on the Method of Load Application, Appl Bionics Biomech, 2021, 202.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c1609b3-6546-4939-aa3c-d9505a1dcbe0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.