PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A New Method for Predicting the Friction Sensitivity of Nitramines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents a new simple correlation between friction sensitivity of nitramines and their molecular structures. This novel correlation can help chemists and chemical engineers to predict the friction sensitivity of new nitramines without using any experimental data, which is important for safety in industrial processes. The new correlation can also help to elucidate the mechanism of initiation of energetic materials by frictional stimuli. This new method assumes that friction sensitivity of a nitramine of general formula CaHbNcOd can be expressed as a function of the optimized elemental composition and the contributions of specific molecular structural parameters. The new correlation has root mean square and average deviations of 7.64 and 6.44 J, respectively, for 20 nitramines with different molecular structures. The proposed new method was also tested for 11 nitramines containing complex molecular structures.
Słowa kluczowe
Rocznik
Strony
215--227
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
  • Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran
autor
  • Department of Chemistry, Malek-ashtar University of Technology, Tehran, Islamic Republic of Iran
Bibliografia
  • [1] Politzer P., Murray J.S., Computational Studies of Energetic Organic Molecules, DTIC Document, 1993.
  • [2] Sikder A., Maddala G., Agrawal J., Singh H, Important Aspects of Behavior of Organic Energetic Compounds: a Review, J. Hazard. Mater., 2001, 84(1), 1-26.
  • [3] Keshavarz M.H., Pouretedal H.R., Semnani A., Simple Way to Predict Electrostatic Sensitivity of Nitroaromatic Compounds, Chemistry, 2008, 17(6), 470-484.
  • [4] Agrawal J.P., High Energy Materials, Propellants, Explosives and Pyrotechnics, Wiley-VCH, 2010.
  • [5] Jungova M., Zeman S., Husarova A., Friction Sensitivity of Nitramines. Part I: Comparison with Impact Sensitivity and Heat of Fusion, HanNeng CaiLiao, 2011, 6, 603-606.
  • [6] Keshavarz M.H., Theoretical Prediction of Electric Spark Sensitivity of Nitroaromatic Energetic Compounds Based on Molecular Structure, J. Hazard. Mater., 2008, 153, 201-206.
  • [7] Keshavarz M.H., Moghadas M.H., Tehrani M.K., Relationship between the Electrostatic Sensitivity of Nitramines and Their Molecular Structure, Propellants Explos. Pyrotech., 2009, 34, 136-141.
  • [8] Bénazet S., Jacob G., Pèpe G., GenMolTM Supramolecular Descriptors Predicting Reliable Sensitivity of Energetic Compounds, Propellants Explos. Pyrotech., 2009, 34, 120-135.
  • [9] Keshavarz M.H., Pouretedal H.R., Semnani A., A Simple Way to Predict Electric Spark Sensitivity of Nitramines, Indian J. Eng. Mater. Sci., 2008, 15, 505-509.
  • [10] Zeman V., Koči J., Zeman S., Electric Spark Sensitivity of Polynitro Compounds. Part II. A Correlation with Detonation Velocity of Some Polynitro Arenes, HanNeng CaiLiao, 1999, 7, 127-132.
  • [11] Zeman V., Koči J., Zeman S., Electric Spark Sensitivity of Polynitro Compounds:Part III. A Correlation with Detonation Velocity of Some Nitramines, HanNeng CaiLiao, 1999, 7, 172-175.
  • [12] Wang G., Xiao H., Ju X., Gong X., Detonation Velocities and Pressures, and Their Relationships with Electric Spark Sensitivities of Nitramines, Propellants Explos. Pyrotech., 2006, 31, 102-109.
  • [13] Wang G., Xiao H., Ju X., Gong X., Calculation of Detonation Velocity, Pressure, and Electric Sensitivity of Nitro Arenes Based on Quantum Chemistry, Propellants Explos. Pyrotech., 2006, 31, 361-368.
  • [14] Keshavarz M.H., The Relationship between the Electric Spark Sensitivity and Detonation Pressure, Indian J. Eng. Mater. Sci., 2008, 15, 281-286.
  • [15] Keshavarz M.H., Pouretedal H.R., Semnani A., Reliable Prediction of Electric Spark Sensitivity of Nitramines: a General Correlation with Detonation Pressure, J. Hazard. Mater., 2009, 167, 461-466.
  • [16] Jian-Ling Z., Chun-Yan Z., Feng Z., Shi-Quan F., Xin-Lu C., Relationship between Electric Spark Sensitivity of Cyclic Nitramines and Their Molecular Electronic Properties, Chinese J. Struct. Chem., 2012, 31, 1263-1270.
  • [17] Zhi C., Cheng X., The Correlation between Electric Spark Sensitivity of Polynitroaromatic Compounds and Their Molecular Electronic Properties, Propellants Explos. Pyrotech., 2010, 35, 555-560.
  • [18] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., The Advantages and Shortcomings of Using Nano-sized Energetic Materials, Cent. Eur. J. Energ. Mater., 2013, 10(1), 135-147.
  • [19] Zhao-Xu C., Heming X., Impact Sensitivity and Activation Energy of Pyrolysis for Tetraole Compounds, Int. J. Quantum Chem., 2000, 79, 350-357.
  • [20] Keshavarz M.H., Zohari N., Seyedsadjadi S.A., Relationship between Electric Spark Sensitivity and Activation Energy of the Thermal Decomposition of Nitramines for Safety Measures in Industrial Processes, J. Loss Prev. Process Ind., 2013, 26, 1452-1456.
  • [21] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., A Novel Method for Risk Assessment of Electrostatic Sensitivity of Nitroaromatics through Their Activation Energies of Thermal Decomposition, J. Therm. Anal. Calorim., 2014, 115(1), 93-100.
  • [22] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., A Link between Impact Sensitivity of Energetic Compounds and Their Activation Energies of Thermal Decomposition, J. Therm. Anal. Calorim., 2014, DOI 10.1007/s10973-014-3643-4.
  • [23] Jungova M., Zeman S., Husarova A., Fiction Sensitivity of Nitramines. Part II: Comparison with Thermal Reactivity, HanNeng CaiLiao, 2011, 6, 607-609.
  • [24] Friedl Z, Jungova M., Zeman S., Husarova A., Friction Sensitivity of Nitramines. Part IV: Links to Surface Electrostatic Potentials, HanNeng CaiLiao, 2011, 19(6),613-615.
  • [25] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Wiley-VCH, 2007.
  • [26] Palm III W. J., Introduction to Matlab for Engineers, McGraw-Hil, New York, 2005, pp. 328-4.
  • [27] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Ghanbarzadeh M., Nazari H.R., Azarniamehraban J., A New Computer Code to Evaluate Detonation Performance of High Explosives and Their Thermochemical Properties. Part I, J. Hazard. Mater., 2009, 172, 1218-1228.
  • [28] Keshavarz M.H., Motamedoshariati H., Moghayadnia R., Ghanbarzadeh M., Azarniamehraban J., A New Computer Code for Assessment of Energetic Materials with Crystal Density, Condensed Phase Enthalpy of Formation, and Activation Energy of Thermolysis, Propellants Explos. Pyrotech., 2013, 38(1), 95-102.
  • [29] Yan Q.L., Zeman S., Theoretical Evaluation of Sensitivity and Thermal Stability for High Explosives based on Quantum Chemistry Methods: a Brief Review, Int. J. Quantum Chem., 2013, 113(113), 1049-1061.
  • [30] Yan Q.L., Zeman S., Svoboda R., Elbeih A., Málek J., The Effect of Crystal Structure on the Thermal Reactivity of CL-20 and Its C4-bonded Explosives, J. Term. Anal. Calorim., 2013, 112(2), 837-849.
  • [31] Östmark H., Bergman H., Ekvall K., Langlet A., A Study of the Sensitivity and Decomposition of 1,3,5-Trinitro-2-oxo-1,3,5-triazacyclohexane, Thermochim. Acta, 1995, 260, 201-216.
  • [32] Klapötke T.M., New Nitrogen-rich High Explosives, Struct. Bond, 2007, 125, 85-121.
  • [33] Agrawal J.P., Surve Mehilal R.N., Sonawane S.H., Some Aromatic Nitrate Esters: Synthesis, Structural Aspects, Thermal and Explosive Properties, J. Hazard. Mater. A, 2000, 77, 11-31.
  • [34] Fischer N., Klapötke T.M., Stierstorfer J., Wiedemann C., 1-Nitratoethyl-5-nitriminotetrazole Derivatives – Shaping Future High Explosives, Polyhedron, 2011, 30, 2374-2386.
  • [35] Sivabalan R., Anniyappan M., Pawar S.J., Talawar M.B., Gore G.M., Venugopalan S., Gandhe B.R., Synthesis, Characterization and Thermolysis Studies on Triazole and Tetrazole Based High Nitrogen Content High Energy Materials, J. Hazard. Mater. A, 2006, 137, 672-680.
  • [36] Klapötke T.M., Penger A., Scheutzow S., Vejs L., Synthesis, Structure, Chemical and Energetic Characterization of 1,3-Dinitramino-2-nitroxypropane, Z. Anorg. Allg. Chem., 2008, 634, 2994-3000.
  • [37] Altenburg T., Klapötke T.M., Penger A., Stierstorfer J., Two Outstanding Explosives Based on 1,2-Dinitroguanidine: Ammonium-dinitroguanidine and 1,7-Diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane, Z. Anorg. Allg. Chem., 2010, 636, 463-471.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c151c43-940f-415c-94fa-7012005d4620
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.