Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
When firing an infantry gun, the muzzle wave will spread into the surrounding space, which will cause harmful mechanical effects to the shooter and military personnel near the weapon. The impact of the muzzle wave on the shooter is increased when a muzzle device is placed on the barrel of the gun. Therefore, weapon designers desire to improve the efficiency of muzzle devices and limit the mechanical impact of the muzzle wave on the shooter’s hearing organs. This article discusses a thermogasdynamic method for determining the changes in excess pressure distribution of the muzzle wave and sound pressure level at the shooter’s ear position. The calculations focus on shooting an assault rifle with three different types of muzzle devices, each with varying features and efficiencies, using 7.62 × 39 mm ammunition. The results indicate that the isobaric curve of the muzzle wave shifts backward when a muzzle device is used. This shift can lead to an increase of up to 6 dB in the sound pressure level near the gunner’s ear. The results of the mathematical models are consistent with the data from the experiments. The article provides a basis for a comprehensive quantitative assessment of the effectiveness of using muzzle devices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
445--466
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam
autor
- Faculty of Special Equipment, Le Quy Don Technical University, Hanoi, Vietnam
Bibliografia
- [1] D.N. Zhukov, V.V. Chernov, and M.V. Zharkov. Development of an algorithm for calculating muzzle devices in the CFD package, fundamentals of ballistic design. In All-Russian Scientific and Technical Conference, pages. 126–129, St. Petersburg, Russia, 2012 (in Russian).
- [2] R. Cayzac, E. Carettet, and T.A. De Roquefort. 3D unsteady intermediate ballistics modelling: Muzzle brake and sabot separation. In Proceedings of the 24th International Symposium on Ballistics, pages 423–430, New Orleans, LA, USA, 2008.
- [3] J.S. Li, M. Qiu, Z.Q. Liao, D.P. Xian, and J. Song. Dynamic modeling and simulation of gatlinggun with muzzle assistant-rotating and recoil absorber. Acta Armamentarii, 35(9):1344–1349, 2014. doi: 10.3969/j.issn.1000-1093.2014.09.003.
- [4] H.H. Zhang, Zh.H. Chen, X.H. Jiang and H.Zh. Li. Investigations on the exterior flow field and the efficiency of the muzzle brake. Journal of Mechanical Science and Technology, 27:95–101, 2013. doi: 10.1007/s12206-012-1223-8.
- [5] D.V. Nguyen, V.Q. Bui, D.T. Nguyen, Q.S. Uong, and H.T. Truong. Studying the thermo-gas-dynamic process in a muzzle brake compensator. Archive of Mechanical Engineering, 70(2):311–328, 2023. doi: 10.24425/ame.2023.145584.
- [6] I. Semenov, P. Utkin, I. Akhmedyanov, I. Menshov, and P. Pasynkov. Numerical investigation of near-muzzle blast levels for perforated muzzle brake using high performance computing. In International Conference “Parallel and Distributed Computing Systems” PDCS 2013, pages 281–289, Kharkiv, Ukraine, March 13-14, 2013.
- [7] M. Stiavnicky and P. Lisy. Influence of barrel vibration on the barrel muzzle position at the moment when bullet exits barrel. Advances in Military Technology, 8(1):89–102, 2013
- [8] N.Z. Ahmed, D.D. Jerković, N.P. Hristov, and W.B. Abaci. Analytical and experimental investigation of the muzzle brake efficiency. Facta Universitatis, Mechanical Engineering, 2023.
- [9] H.L. Hua H, Zh.Q. Liao, and X.Y. Zhang. Muzzle dynamic characteristics analysis and its matching for firing accuracy improvement. Journal of Vibration and Shock, 36(8):29–33, 2017. (in Chinese).
- [10] J.B. Xiao, G.L. Yang, H.Q. Li, M. Qiu, Zh.Q. Liao. Influence of matching muzzle brake and buffer on weapon recoil. Journal of Ballistic, 29(4):86–92, 2017.
- [11] G. Klingenberg. Gun muzzle blast and flash. Propellants, Explosives, Pyrotechnics, 14(2):57-68, 1989. doi: 10.1002/prep.19890140204.
- [12] Q. Luo and X. Zhang. Numerical simulation of serial launch process of multiple projectiles considering the aftereffect period. International Journal of Numerical Methods for Heat & Fluid Flow, 27(8):1720–1734, 2017. doi: 10.1108/hff-04-2016-0151.
- [13] Y. Wang and X. Zhang. Numerical investigation on muzzle flow characteristics for small combustion chamber with embedded propelled body. Structures, 50:1783–1793, 2023. doi: 10.1016/j.istruc.2023.03.001.
- [14] X.Y. Zhao, K.D. Zhou, L. He, Y. Lu, J. Wang, and Q. Zheng. Numerical simulation and experiment on impulse noise in a small caliber rifle with muzzle brake. Shock and Vibration, 2019:5938034, 2019. doi: 10.1155/2019/5938034.
- [15] P.F. Li and X.B. Zhang. Numerical research on adverse effect of muzzle flow formed by muzzlebrake considering secondary combustion. Defence Technology, 17(4):1178–1189, 2021. doi: 10.1016/j.dt.2020.06.019.
- [16] J. Bin, M. Kim, and S. Lee. A numerical study on the generation of impulsive noise by complex flows discharging from a muzzle. International Journal for Numerical Methods in Engineering, 75(8):964–991, 2008. doi: 10.1002/nme.2291.
- [17] C.G. Le Prell. Sound level suppressors for the reduction of firearm noise: implications for hearing conservation. Canadian Audiologist, 4(5), 2017.
- [18] G.A. Flamme, M. Stewart, D. Meinke, J. Lankford, and P. Rasmussen. Auditory risk to unprotected bystanders exposed to firearm noise, Journal of the American Academy of Audiology, 22(2):93–103, 2011. doi: 10.3766/jaaa.22.2.4.
- [19] J.E. Lankford, D.K. Meinke, G.A. Flamme, D.S. Finan, M. Stewart, S. Tasko, and W.J. Murphy. Auditory risk of air rifles. International Journal of Audiology, 55(sup1):S51–S58, 2016. doi: 10.3109/14992027.2015.1131851.
- [20] V.K. Zelenko and A.I. Nesterenko. Analysis of advantages and disadvantages of modern muzzle devices for reducing the sound of a shot. International Research Journal, 12(102):63–70, 2020. doi: 10.23670/IRJ.2020.102.12.011 (in Russian).
- [21] J.C. Freytag, D.R. Begault, and C.A. Peltier. The acoustics of gunfire. In Inter-Naise 2006, 10 pages, 2-6 Dec.2006, Honolulu, Hawaii, USA.
- [22] D.K. Meinke, D S. Finan, G.A. Flamme, W.J. Murphy, M. Stewart, J.E. Lankford, and S. Tasko. Prevention of noise-induced hearing loss from recreational firearms. Seminars in Hearing, 38(04):267-281, 2017. doi: 10.1055/s-0037-1606323.
- [23] R.M. Traynor, et al. Jump Start Your Practice with Recreational Audiology, Hearing Health & Technology Matters, 2020.
- [24] M.A. Ryzhikov et al. Hygienic characteristics of impulse noise during firearms shooting, Experimental studies. Bulletin of the Russian Military-Medical Academy, 149-153, 2016 (in Russian).
- [25] P. Teague, J. Conomos and V. Alexandrou. Overview of developments in the description and assessment of high intensity impulse noise exposure. In Proceedings of ACOUSTICS 2016, 10 pages, 9-11 Nov. 2016, Brisbane, Australia
- [26] E. Lobarinas, R. Scott, C. Spankovich,and C.G. Le Prell. Differential effects of suppressors on hazardous sound pressure levels generated by AR-15 rifles: Considerations for recreationalshooters, law enforcement, and the military. International Journal of Audiology, 55(sup1):S59-S71, 2016. doi: 10.3109/14992027.2015.1122241.
- [27] J. Selech, A. Kilikevičius, K. Kilikevičien˙e, S. Borodinas, J. Matijošius, D. Vainorius, J. Marcinkiewicz, and Z. Staszak. Force and Sound pressure sensors used for modeling the impact of the firearm with a suppressor. Applied Sciences, 10(3):961, 2020. doi: 10.3390/app10030961.
- [28] P. VanDelden, P. Tsui,and A. Medemblik. Differences in Sound Exposure Results From Firearm Discharge Due to Measurement Equipment Selection, Canadian Acoustics [Internet], 2019 Oct. 16 [cited 2023 May 23], 47(3):86-7. Available from: https://jcaa.caa-aca.ca/index.php/jcaa/ article/view/3351.
- [29] Yu.P. Platonov. Thermo-gas-dynamics of Automatic Weapons, Mechanical Engineering, 2009(in Russian).
- [30] V.P. Korobe˘ınikov. Problems in the Theory of Point Explosion in Gases. American Mathematical Society, 1976.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c0fd5ae-6d7d-45f1-b880-e75d0b488494
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.