PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of ultrasonic treatment of activated carbon on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Use of ultrasonic radiation for improving the properties of activated carbon was the aim of this paper. Increase of density of states at Fermi level was the main factor, responsible for working characteristics of electrochemical supercapacitors. Design/methodology/approach: Working parameters of supercapacitors on the base of activated carbon have been studied by means of precisional porometry, small angle X-ray scattering, cyclic voltamerometry, electrochemical impedance spectroscopy and computer simulation methods. Findings: The possibility to effect the interface between activated carbon and electrolyte by means of ultrasonic treatment in cavitation and noncavitation regimes is proved. It is shown that ultrasonic treatment in noncavitation regimes causes the significant increase of density of states at Fermi level that results in better farad-volt dependences. Research limitations/implications: This research is a complete and accomplished work. Practical implications: Modification of electric double layer by meanans in ultrasonic treatment, proposed in this work, could be regarded as effective way to obtaine the advanced electrode materials in devices of energy generation and storage. Originality/value: This work is important for physics, material science and chemistry because it is related with new possibilities to change the mobility of charge carries in electric double layer by means of ultrasonic irradiation.
Rocznik
Strony
59--65
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, Bandera Street 12, Lviv 79013, Ukraine
  • Lviv Polytechnic National University, Bandera Street 12, Lviv 79013, Ukraine
  • Lviv Polytechnic National University, Bandera Street 12, Lviv 79013, Ukraine
  • Lviv Polytechnic National University, Bandera Street 12, Lviv 79013, Ukraine
autor
  • Ivan Franko National University of Lviv, Kyrylo and Mefodiy Street 8, Lviv 79005, Ukraine
autor
  • Ivan Franko National University of Lviv, Kyrylo and Mefodiy Street 8, Lviv 79005, Ukraine
Bibliografia
  • [1] B.E. Conway, Electrochemical supercapacitors. Plenum Publishing, New York, 1999.
  • [2] S. Dietz, V. Nquen, Monolithic carbon for double layer capacitors, Proceedings of the 10th International Seminar on Double Layer Capacitor and Similar Energy Storage Devices, Deerfield Beach, Florida, USA, 2000, 85-92.
  • [3] H. Shi, Activated carbons and double layer capacitance, Electrochimica Acta 41 (1996) 1633-1639.
  • [4] J.O’M. Bockris, M.A.V. Devanathan, K. Muller, On the structure of charged interfaces, Proceedings of the Royal Society A274 (1963) 55-79.
  • [5] G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak, Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochimica Acta 50 (2005) 1197-1206.
  • [6] A.D. Little, Overview of electrochemical capacitors: comparison with batteries, Proceedings 4th International Seminar on Double Layer Capacitor and Similar Energy Storage Devices, Deerfield Beach, Florida, USA, 1994.
  • [7] J.P. Zheng, Applied energy density theory to nanogate capacitors, Proceedings of the 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, Florida, USA, 2004, 142-154.
  • [8] Y.-Z. Wei, B. Fang, S. Iwasa, M. Kumagai, A novel electrode material for electric double-layer capacitors, Journal of Power Sources 141 (2005) 386-391.
  • [9] B Zhang, J Liang, C.L Xu, B.Q Wei, D.B Ruan, D.H Wu, Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte, Materials Letters 51 (2001) 539-542.
  • [10] K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole, Journal of The Electrochemical Society 149 (2002) A1058- A1062.
  • [11] J.P. Zheng, T.R. Jow, A new charge storage mechanism for electrochemical capacitors, Journal of The Electrochemical Society 142 (1995) L6- L8.
  • [12] D.A. McKeown, P.L. Hagans, L.P.L. Carette, A.E. Russell, K.E. Swider, D.R. Rolison, Structure of hydrous ruthenium oxides: Implications for charge storage, Journal of Physical Chemistry B 103 (1999) 4825-4832.
  • [13] B.E. Conway, H.A. Andreas, W.G.Pell, Specific ion effects on double layer capacitance of a C-Cloth electrode showing extended charge acceptance, Proceedings of the 14th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, Florida, USA, 2004, 155-176.
  • [14] B.P. Bakhmatyuk, B.Ya. Venhryn, I.I. Grygorchak, M.M. Micov, Yu.O. Kulyk, On the hierarchy of the influences of porous and electronic structures of carbonaceous materials on parameters of molecular storage devices, Electrochimica Acta 52 (2007) 6604-6610.
  • [15] L.A. Dobrzański, Report on the main areas of the materials science and surface engineering own research, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 514-549.
  • [16] L.A. Dobrzański, M. Pawlyta, A. Hudecki, Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers, Journal of Achievements in Materials and Manufacturing Engineering 49/2 (2011) 550-565.
  • [17] B.Ya. Venhryn, I.I. Grygorchak, Z.A. Stotsko, Yu.O. Kulyk, S.I. Mudry, V.V. Strelchuk, S.I. Budzulyak, G.I. Dovbeshko, O.M. Fesenko, Changes in the fractal and electronic structures of activated carbons produced by ultrasonic radiation and the effect on their performance in supercapacitors, Archives of Materials Science and Engineering 57/1 (2012) 28-37.
  • [18] H. Gerischer, An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level, The Journal of Physical Chemistry 89 (1985) 4249-4251.
  • [19] R.N. Kyutt, E.A. Smorgonskaya, A.M. Danishevskii, S.K. Gordeev, A.B. Grechinskaya, Structural study of nanoporous carbon produced from polycrystalline carbide materials: Small-angle x-ray scattering, Physics of the Solid State 41 (1999) 1359-1363.
  • [20] A.M. Suhotin, Handbook on Electrochemistry. Himiya, Leningrad, 1981 (in Russian).
  • [21] B.E. Conway, Kinetic and ohmic polarization limitations to supercapacitor power output and performance, Proceedings of the 3th international seminar on double layer capacitor and similar energy storage devices, Deerfield Beach, Florida, USA, 1993.
  • [22] Yu.Ya. Gurevich, Ju.B. Pleskov, Photoelectrochemistry of Semiconductors, Moscow, 1983 (in Russian).
  • [23] R. De Levie, Electrochemical response of porous and rough electrodes, Advances in Electrochemistry and Electrochemical Engineering 6 (1967) 329-397.
  • [24] I.V. Ostrovskii, A.B.Nadtochii, A.A. Podolyan, Ultrasonically stimulated low-temperature redistribution of impurities in silicon, Semiconductors, 36 (2002) 367-369.
  • [25] S. Ergun, J.B. Yasinsky, and J.R. Townsend, Transverse and longitudinal optical properties of graphite, Carbon 5 (1967) 403-408.
  • [26] A.N. Frumkin, Potentials of a Zero Charge, Moscow, 1979 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c0c628a-357f-4b4e-9f44-4a055e8efd93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.