Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The matrix Green’s function of the initial-boundary value problem of admixture double-diffusivity is defined. The initial-boundary value problem with a point source is formulated for the matrix elements for determination of the matrix Green’s function. Formulae for matrix elements are obtained and the behavior of Green’s functions is investigated. It is shown that the surface generated by the Green’s function has a typical sharp peak in the vicinity of the point of action of the point mass source, and in the vicinity of the top boundary of the layer ,the values of the second element of the Green’s function are times higher than the values of the first one the state of which is corresponding to the quick migration way. On this basis the solutions of the initial-boundary value problems under the action of the internal point source of mass are found. The cases of the deterministic source as well as stochastic ones under uniformand triangular distributions of the coordinate of the mass source location are considered.
Wydawca
Rocznik
Tom
Strony
75--99
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Institute of Mechanics and Applied Informatics, Kazimierz Wielki University in Bydgoszcz, Kopernika 1, 85-074 Bydgoszcz, Poland
- Department of Mathematical Modeling of Nonequilibrium Processes, Centre of Mathematical Modeling of Y. S. Pidstryhach Institute of Applied, Problems of Mechanics and Mathematics, of the National Academy of Sciences of Ukraine, Lviv, Ukraine
autor
- Department of Mathematical Modeling of Nonequilibrium Processes, Centre of Mathematical Modeling of Y. S. Pidstryhach Institute of Applied, Problems of Mechanics and Mathematics, of the National Academy of Sciences of Ukraine, Lviv, Ukraine
- Department of Computational Mathematics and Programming, Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Bandery 14, Lviv, Ukraine
autor
- Department of Mathematical Modeling of Nonequilibrium Processes, Centre of Mathematical Modeling of Y. S. Pidstryhach Institute of Applied, Problems of Mechanics and Mathematics, of the National Academy of Sciences of Ukraine, Lviv, Ukraine
- Department of Computational Mathematics and Programming, Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, Bandery 14, Lviv, Ukraine
Bibliografia
- [1] Cole K D, Beck J V, Haji-Sheikh A and Litkouhi B 2011 Heat conduction using Green’sfunctions, 2nd ed., Taylor & Francis
- [2] Stone M and Goldbart P 2008 Mathematics for physics,PIMANDER-CASAUBON
- [3] Polyanin A D and Zaitsev V F 2003 Handbook of exact solutions for ordinary differentialequations, 2nd ed., Chapman & Hall/CRCPress
- [4] Polyanin A D and Nazaikinskii V EHandbook of linear partial differential equations forengineers and scientists, 2nd ed., Chapman & Hall/CRCPress
- [5] Hoshan N A 2014 General mathematics notes 23 108
- [6] Sveshnikov A G, Bogoljubov A N and Kravcov V V 2004 Lekcii po matematicheskoj fizike, Moscow State University Publisher
- [7] Arfken G 1985 Mathematical methods for physicists, 3rd ed., Academic Press
- [8] Arfken G B, Weber H and Harris F E 2012 Mathematical methods for physicists, 7th ed.:A comprehensive guide, Academic Press
- [9] Eyges L 1972 The classical electromagnetic field, Dover Publications
- [10] Katayama T and Morishima K 2018 International Journal of Thermal Sciences13 3170 doi: https: //doi.org/10.1016/j.ijthermalsci.2018.05.034
- [11] Feynman R P and Hibbs A R 1965 Quantum mechanics and path integrals, McGraw-Hill
- [12] Rytov S M, Kravtsov Y A and Tatarsky V I 1978 Introduction to statistical radiophysics.part II. Random fields, Nauka Publisher
- [13] Naimark M A 1968 Linear differential operators, Ungar
- [14] Ptashnyk B I, Il’kiv V S, Kmit’ I Ya and Polishchuk V M 2002 Nonlocal boundary-valueproblems for partial differential equations, Naukova Dumka Publisher
- [15] Duffy D G 2001 Green’s functions with applications, Chapman & Hall/CRC
- [16] Hartmann F 2013 Green’s functions and finite element, Springer-Verlag
- [17] Stakgold I 1979 Green’s functions and boundary value problems, Wiley
- [18] Sneddon I N 1951 Fourier transform, McGraw-Hill
- [19] Chaplya Y Y, Chernukha O Y, Honcharuk V Y and Torskyy A R 2010 Transfer prosesses of decaying substance in heterogeneous media, Eurosvit Publisher
- [20] Abramowitz M and Stegun I (Eds) 1964 Handbook of mathematical functions withformulas, graphs and mathematical tables, National Bureau of Standards
- [21] Vladimirov V S 1976 Equations of mathematical physics, Nauka Publisher
- [22] Vlasiy O and Chernukha O 2014 Physico-mathematical modeling and informationaltechnologies 20 58
- [23] Chattopadhyay A K and Aifantis E C 2017 Phys. Rev. E951 doi: 10.1103/PhysRevE.95.052134, Epub 2017 May 22
- [24] Chaplya Y Y and Chernukha O Y 2003 Physical-mathematical modelling heterodiffusivemass transfer,NASof Ukraine (printSPOLOM)
- [25] Korolyuk V S, Portenko N I, Skorokhod A V and Turbin A F 1985 Handbook on theprobability theory and mathematical statistics, Nauka Publisher
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c06a9f3-f385-48c5-80bc-ef547f847bf5