Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The classical Orlicz and Luxemburg norms generated by an Orlicz function Φ can be defined with the use of the Amemiya formula [H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. 11 (2000), no. 4, 573-585]. Moreover, in this article Hudzik and Maligranda suggested investigating a family of p-Amemiya norms defined by the formula ∥x∥Φ,p=infk>011/k(1+IpΦ(kx))1/p, where 1≤p≤∞ (under the convention: (1+u∞)1/∞=limp→∞(1+up)1/p=max1,u for all u≥0 ). Based on this idea, a number of papers have been published in the past few years. In this paper, we present some major results concerning the geometric properties of Orlicz spaces equipped with p-Amemiya norms. In the last section, a more general case of Amemiya type norms is investigated. A few open questions concerning this theory will be stated as well.
Wydawca
Czasopismo
Rocznik
Tom
Strony
183--209
Opis fizyczny
Bibliogr.49 poz., wykr.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland
Bibliografia
- [1] B. Bru and H. Heinich, Approximation dans les espaces de Käthe, C.R. Acad. Sei. Paris 296 (1983), 773-775.
- [2] S. Chen, Local non-squareness of Orlicz sequence spaces, Nat. Sei. J. Harbin Normal Univ. 2 (1983), 48-56.
- [3] S. Chen, Non-squareness of Orlicz spaces, Chinese Ann. Math. 6A (1985), 607-613.
- [4] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math., vol. 356, Warsaw 1996.
- [5] S. Chen and M. Wisla, Extreme compact operators from Orlicz spaces to C(O), Commentationes Mathematicae Universitatis Carolinae 34 (1993), no. 1, 63-77.
- [6] Y. Cui, L. Duan, H. Hudzik, and M. Wisła, Basic theory of p-Amemiya norm in Orlicz spaces (1 ≤ p ≤ ∞): Extreme points and rotundity in Orlicz spaces equipped with these norms, Nonlinear Analysis 69 (2008), 1796-1816, DOI 10.1016/j.na.2007.07.026.
- [7] S. Chen, X. He, and H. Hudzik, Monotonicity and best approximation in Banach lattices, Acta Math. Sinica 25 (2009), no.5, 785-794, DOI 10.1007/sl0114-009-7391-5.
- [8] S. Chen and Y. Wang, On the definition of non-squareness in normed spaces, China Ann. Math. 9 A (1988), no. 3, 330-334; in Chinese.
- [9] Y. Cui, L. Jie, and R. Płuciennik, Local uniform nonsquareness in Cesäro sequence spaces, Comment. Math. 37 (1997), 47-58.
- [10] Y. Cui, H. Hudzik, and R. Płuciennik, Extreme points and strongly extreme points in Orlicz spaces equipped with the Orlicz norm, Z. Anal. Anwendungen 22 (2003), 789-817, DOI 10.4171/ZAA/1174.
- [11] Y. Cui, H. Hudzik, and M. Wisła, Monotonicity properties and dominated best approximation problems in Orlicz spaces equipped with the p-Amemiya norm, Journal of Mathematical Analysis and Applications 432 (2015), 1095-1105, DOI 10.1016/j.jmaa.2015.07.004.
- [12] Y. Cui, H. Hudzik, M. Wisła, and K. Wlaźlak, Non-squareness properties of Orlicz spaces equipped with the p-Amemiya norm, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3973-3993, DOI 10.1016/j.na.2012.02.014.
- [13] Y. Cui, H. Hudzik, J. Li, and M. Wisła, Strongly extreme points in Orlicz spaces equipped with the p-Amemiya norm, Nonlinear Analysis: Theory, Methods and Applications 71 (2009), 6343-6364, DOI 10.1016/j.na.2009.06.085.
- [14] Y. Cui, H. Hudzik, M. Wisła, andM. Zou, Extreme points and strong U-points in Musielak-Orlicz sequence spaces eqipped with the Orlicz norm, Zeitschrift für Analysis und Ihre Anwendungen 25 (2006), no. 2.
- [15] T. Dominguez, H. Hudzik, G. Lopez, M. Mastyło, and B. Sims, Complete characterization of Kadec-Klee properties in Orlicz spaces, Houston J. Math 29 (2003), no. 4,1027-1044.
- [16] N. Dunford and J. T. Schwarz, Linear operators I, General Theory, Pure Appl. Math., vol. 7, Interscience, New York 1958.
- [17] D. Benavides T., H. Hudzik, G. Lopez, M. Mastyfo, and B. Sims, Kadec-Klee properties in Orlicz spaces, Huston J. Math. 29 (2003), no. 4,1027-1044.
- [18] D. Fitzpatrick and B. Reznick, Skewness in Banach spaces, Trans. Amer. Math. Soc. 275 (1983), 587-597, DOI 10.2307/1999040.
- [19] P. Foralewski, H. Hudzik, W. Kowalewski, and M. Wisła, Monotonicity properties of Banach lattices and their applications - a survey, Ordered Structures and Applications: Positivity VII (Zaanen Centennial Conference) (Leiden, 2013), 203-232.
- [20] P. Foralewski, H. Hudzik, and R. Płuciennik, Orlicz spaces without extreme points,]. Math. Anal. Appl. 361 (2010), 506-519, DOI 10.1016/j.jmaa.2009.07.015.
- [21] J. Garcia-Falset, E. Llorens-Fuster, and E. Mazcunan-Navarro, Uniformly nonsquare Banach spaces ha¬ve the fixed point property for nonexpansive mappings, J. Funct. Anal. 233 (2006), no. 2, 494-514, DOI 10.1016/j.jfa.2005.09.002.
- [22] A. S. Granero and M. Wisła, Closedness of the set of extreme points in Orlicz spaces, Math. Nachrichten 157 (1992), 319-334, DOI 10.1002/mana.l9921570125.
- [23] R. Grząślewicz, H. Hudzik, and W. Kurc, Extreme and exposed points in Orlicz spaces, Canadian J. Math. 44 (1992), 505-515, DOI 10.4153/CJM-1992-032-3.
- [24] H. Hudzik, Some class of uniformly non-square Orlicz-Bochner spaces, Comment. Math. Univ. Carolinae 26 (1985), no. 2, 269-274.
- [25] H. Hudzik, A. Kamińska, and M. Mastyło, Monotonicity and rotundity properties in Banach lattices. 30 (2000), no. 3, 933-950, DOI 10.1216/rmjm/1021477253.
- [26] H. Hudzik, A. Kamińska, and M. Mastyło, Local geometry of L1∩L∞ and L1 + L∞, , Arch. Math. 68 (1997), 159-169, DOI 10.1007/s000130050045.
- [27] H. Hudzik and W. Kurc, Monotonicity properties of Musielak-Orlicz spaces and dominated best approximation in Banach lattices, J. Approx. Theory 95 (1998), 953-368, DOI 10.1006/jath.l997.3226.
- [28] H. Hudzik, W. Kurc, and M. Wisła, Strongly extreme points in Orlicz function spaces, J. Math. Anal. Appl. 189 (1995), 651-670, DOI 10.1006/jmaa.l995.1043.
- [29] H. Hudzik and L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. 11 (2000), no. 4, 573-585, DOI 10.1016/s0019-3577(00)80026-9.
- [30] H. Hudzik and M. Wisła, On extreme points of Orlicz spaces with Orlicz norm, Collet. Math. 44 (1993), 135-146.
- [31] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), no. 3, 542-550.
- [32] L. W. Kantorovich and G. P. Akilov, Functional Analysis, Mocow 1977; in Russian.
- [33] M. Kato, L. Maligranda, and Y. Takahasi, On fames and Jordan von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 114 (2001), no. 3,275-295, DOI 10.4064/sml44-3-5.
- [34] M. A. Krasnoselskii and Y. B. Rutickii, Convex function and Orlicz spaces, Nordhoff, Groningen 1961.
- [35] W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applications to best approximation, J. Approx. Theory 69 (1992), no. 2,173-187, DOI 10.1016/0021-9045(92)90141-A.
- [36] J. Lindenstrauss and L. Tzafiri, Classical Banach Spaces, Springer Verlag, Berlin-Heidelberg-New York 1977.
- [37] W. A. J. Luxemburg, Banach Function Spaces, Thesis Delft 1955.
- [38] W. A. J. Luxemburg and A. C. Zaanen, Conjugate spaces of Orlicz spaces, Indag. Math. 18 (1956), 217-228.
- [39] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math., vol. 5, Campinas, SP, Brasil 1989.
- [40] H. W. Milnes, Convexity of Orlicz spaces, Pacific J. Math. 7 (1957), 1451-1486.
- [41] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin- -Heidelberg-New York-Tokyo 1983.
- [42] H. Nakano, Topology and Linear Topological Spaces., Tokyo Math. Book Series, vol. 3, Maruzen, Tokyo 1951.
- [43] W. Orlicz, A note on modular spaces, Bull. Acad. Polon. Sei. Math. 9 (1961), 157-162.
- [44] W Orlicz, Über eine gewisse Klasse von Räumen vom Typus B., Bull. Intern. Pol. Ser. A Kraków (1932), 207-220.
- [45] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker Inc., New York 1991.
- [46] K. Sundaresan, Uniformly non-square Orlicz spaces, Nieuw Arch. Wisk. 14 (1966), 31-39.
- [47] Y. Takahashi and M. Kato, Von Neuman-Jordan constant and uniformly nonsquare Banach spaces, Nihon- kai Math. J. 9 (1998), 155-169.
- [48] M. Wisła, A full description of extreme points in C(Ώ,L(μ)), Proc. Amer. Math. Soc. 113 (1991), no. 1, 193-200, DOI 10.2307/2048458.
- [49] M. Wisła, Closedness of the set of extreme points in Orlicz spaces with Orlicz norm, Comm. Math. 41 (2001), 221-239.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c0681ed-2508-4890-a7e9-0b6d0ac1b544