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EFFECTIVE ALGORITHM FOR STRUCTURAL OPTIMIZATION 

SUBJECTED TO FATIGUE DAMAGE AND RANDOM EXCITATION 
 

Summary. The aim of the paper is to present the computationally time-

consuming task of simulating the process of randomly oscillating thin-shell 

structures to realize an optimal design with limitations in terms of fatigue damage. 

The most important aim here is to design an effective optimization algorithm and 

choose an appropriate approach for the evaluation of multiaxial fatigue damage in 

the context of the random and non-proportional character of stress in the structure 

when considering the standard finite element model. The authors propose their 

own optimization algorithm, which is described in the present study and, on the 

basis of tests, has proven to be suitable for the aforementioned technical 

problems. The proposition of algorithms for calculating the accumulation of 

fatigue damage in non-proportional and multiaxial stresses (especially in terms of 

the application of rainflow analysis by decomposition of the equivalent stress, as 

determined by the appropriate “fatigue” criterion) is very important in such 
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computational processes. The entire computational process was implemented in 

MATLAB with the “Discret_Opt_Fat” main control program. The article presents 

the theoretical basis for the presented complex problem solution, its 

algorithmization and the technical application. 

Keywords: finite element analysis; structural optimization; optimization 

algorithm; multiaxial rainflow counting; fatigue damage 

 

 

1. INTRODUCTION 

  

It is almost impossible to pick up a journal or conference programme focused on 

computational mechanics that does not contain some reference to structural optimization. 

Although designing machine parameters by experience is achievable, it is much better and 

more effective to predict the base properties of the new designed structure by using an 

optimization procedure, which is generally predicated on a series of controlled computing 

analyses [5]. 

Today, we expect designed objects to be optimally balanced over the entire life cycle, i.e., 

projecting, manufacturing, running, maintaining and liquidating. The mentioned processes 

mainly relate to the economic aspects of each stage. Achieving this goal is very difficult, 

because designers are usually confronted by contradictory demands related to the individual 

stages of the aforementioned life cycle of designed objects [3,8,11]. 

The first formulations of optimization problems in the context of mathematical 

programming appeared from around 1960. One of the pioneers who significantly influenced 

the development of optimal construction designs for machines and their components was 

undoubtedly Schmit. He linked optimization methods with the new and progressive 

computational methods of the time, which included the finite element method. During this 

period, the weight of the monitored object or a certain strength condition was the objective 

function. Optimization processes were gradually improved by adding other limiting 

conditions. In the second half of the last century, other works of a similar nature, which 

extended options in the field of optimally designing the parameters of machines and their 

components towards automated approaches, were published. We cannot omit the works of 

Kirch, Morrow or Gallagher here. Numerous effective approaches were proposed, based not 

only on a purely mathematical comprehension of the optimization problem, but also on 

slightly non-traditional or more precisely unaccustomed approaches, which play an important 

role in solving various technical problems [9]. These approaches use some of the basic 

principles of mechanics. 

The optimization of mechanical systems combines numerical mathematics and engineering 

mechanics. It is used in applications in civil engineering, mechanical engineering, the 

automotive and shipbuilding industry, etc. It has made the biggest progress in the last 30 years 

thanks to the utilization of very fast numerical computers and computer graphics. When 

choosing cost, structural weight or maximum power at a limited cost as the design criterion, 

the importance of optimization is evident [9]. 

  

  

2. STRESS ANALYSIS USING THE FINITE ELEMENT MODEL 
  

Generally, the stress calculation for the selected element or node of the finite element 

model can be realized as follows [2,7]: 
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- A) In the case of the quasi-static time-dependent load, we must solve the following 

equation: 

   tt fuK  ;                                                             (1) 

while, for the j-th element (node), it is possible to calculate the stress response using the 

relationship: 

     ttt jjjjjjjj fKATBDuBDσ  1

,                           (2) 

where Dj is the standard material matrix, Bj is the transformation matrix between the strain 

function and the j-th element node displacements, Tj is a classic transformation matrix 

between the local and global coordinate systems, and Aj is a Boolean matrix, i.e., the 

localization matrix determining the element displacements’ position in the global 

displacement vector.  

 

- B) In the case of a linear oscillating system described by the equation below:   

       tttt fuKuBuM  
,                                          (3) 

it is possible to find a solution by applying a well-known modal transformation, 

   tt yVu                                                         (4) 

of the original Eq. (3) to a significantly smaller set of differential equation in the form: 

       tttt fVyλyByI  
~

,                                         (5) 

where y(t) is the vector of the so-called modal coordinates, V is the modal matrix of the 

preferred modal shapes (eigenvalues vectors), λ is the corresponding spectral matrix, I is 

identity matrix, and B
~

 is the damping matrix for the applied modal shapes [2,7]. Solving Eq. 

(5) provides the time response y (t), which enters the resulting relationship for the stress 

response in the j-th element as follows [2,7]:  

   tt jjjjj yVATBDσ 
.                                        (6) 

Previous theoretical considerations were of a general nature. Let us now focus our attention 

on the well-known shell finite elements (Kirchhoff’s or Mindlin’s formulation) [2]. The 

stiffness parameters depend on material constants and element geometry (mainly its 

thickness). At first, we have to prepare the stress calculation process. This process is based on 

the expression of the j-th element membrane forces and bending moments (without shear 

forces) [2], i.e.: 

 

   ttdSdSFFF
jLmjjjL

S

jmm

S

jmmm

T

jxyyyxx jjjjjj
uIDuBEεEF  

 (7) 

and: 

 

   t
t

dSdSMMM
jL

j

bj

j

jL

S

jbb

S

jbbb

T

jxyyyxx jjjjj
uIDuBEεEM   12

3

. (8) 

The integration matrices Im and Ib are: 

 

S

mm dSBI

,  

S

bb dSBI

 (9) 

and can only be calculated by using the numerical approach. Vector jLu
is the displacement 

vector of the j-th element in the local coordinate system and t is the element thickness. Further 

details about the material and element matrices Em, Eb, D, Bm, Bb are presented in the relevant 

literature [2]. The extreme stress values can be expected at the top or on the bottom surface. 

Generally, this means: 
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 (10) 

or: 

 
   tt

jjj LLLmb fCσ _ .    (11) 

 

Let us build new material and auxiliary matrices as follows: 
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where the matrix I3 is the classical unit matrix. Then (11) can be rewritten as follows: 

 
   tt

jLmbmbttopt

j

Lmbmbtopttopmbj uIDDAuIEAσ  ,,_ , (13) 

 
   tt

jLmbmbtbott

j

Lmbmbbottbotmbj uIDDAuIEAσ  ,,_ . (14) 

By assuming a relation between the local element displacements 
 t

jLu
and the global 

displacement vector u(t): 

 
   tt

jLGjL j
uTTu  01 ,   (15) 

(13) and (14) may be rewritten as: 

 
   tt

jLGmbmbttopttopmbj j
uTTIDDAσ  01,_ ,  (16) 

and: 

 
   tt

jLGmbmbtbottbotmbj j
uTTIDDAσ  01,_ ,   (17) 

where TLG is a classic transformation matrix between the local and global coordinate systems, 

and T01 is again a Boolean matrix, i.e., the localization matrix determining the element 

position in the global displacement vector u (t). The response vector u (t) can be obtained 

from the solution of Eq. (1) or (3). 

 

 

3. FATIGUE DAMAGE CALCULATION  

 

3.1. Multilevel S-N curve 
 

It is well-known that the Wöhler curve (Fig. 1) or S-2N curve is the basic source of 

information on material fatigue life. Generally, the S-2N curve is statistically evaluated by an 

experimental fatigue curve [1,11], which reflects the behaviour of the magnitude of a cyclical 

nominal stress Sa (or A in subsequent analysis) versus the logarithmic scale of cycles to 

failure 2Nf. It is advantageous to show it in terms of logarithmical or semi-logarithmical 

coordinates. 
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                    Fig. 1. S-2N curve            Fig. 2. Polynomial approximation of S-2N curve 

 

The A-2Nf relation can be written as follows: 

 
 b

ffA N2 
, (18) 

where f is the fatigue stress coefficient, 2Nf is the number of cycles to failure, b is the fatigue 

strength exponent, and A is the stress amplitude to failure. Some researchers have rewritten 

the relationship in (18) in the following form [1]: 

 
  KN f

m

A  2
, (19) 

where m=- (1/b) and 
m

f

)b/(

fK  
1

. Considering the mean stress σm in the modified version 

of the stress amplitude (using Goodman, Soderberg, Geber), Eq. (19) can be rewritten as 

follows [1]: 
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1

,                           (20) 

If k=1 and RF=RE (yield stress), Soderberg’s model is used; if k=1 and RF=RM (strength 

limit), Goodman’s model is used; and, if k=2 and RF=RM, Geber’s model is used. Using the 

linear Palmgren-Miner law, we can calculate fatigue damage for stress amplitude Aj as 

follows [1]: 

 

m
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m
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



. (21) 

From the experimental measurements, we can construct the so-called multilevel fatigue 

curve. The mathematical formulation of this multilevel A-2Nf curve for i-th part can be 

described as follows: 

 
ii m

ii

m

ii NN 1122    , (22) 

where the exponent mi can be written as follows: 
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The calculation of the total damage with respect to the mean stress and multilevel fatigue 

curve is given by:  
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3.2. Chosen multiaxial damage hypothesis 

 

Let us focus on counting the cumulative damage by using multiaxial rainflow 

decomposition of the stress response. It should be noted [1,4] that the fatigue damage 

calculation of the machine parts is generally problematic because the results are considerably 

changed in the principal stresses [4]. Using finite element analysis, we can obtain six 

components of the stress-time function (multiaxial stress), but it is very difficult to obtain 

an equivalent uniaxial load spectrum due to comparison with the applied computational 

fatigue curve. In our case, the rainflow analysis for random stresses, known in its classic 

uniaxial form as the von Mises or Tresca hypothesis, is impossible. This means that the 

important goal of this part will be to propose some approaches to estimate the high-cycle 

fatigue damage for multiaxial stresses caused by random vibrations in the analysed structure 

[1,4]. Generally, the principal approaches for the determination of applicable equivalent stress 

(or fatigue criterion) in the case of rainflow decomposition are the critical plane approach, 

integral approach, and the combination of linear stress components; our study focuses mainly 

on the latter methodology. 

 

Damage calculation using the linear stress components combination approach 

 

The fundamental idea is to count the rainflow cycles for all linear combinations of the 

stress random vector components [6,10]. Practically, if the stress state is biaxial (e.g., thin-

shell finite element), the stress components can be written in the form of a three-dimensional 

vector =[x, y, xy]
T, such that the equivalent stress will be calculated as follows: 

 
        σc  tctctct xyyxMRF_A  321  (25) 

on condition that 12
3

2
2

2
1  ccc . In the case of the shell finite element, we can again obtain 

following relationships: 

 
   cσcc topmb_jtop

j

MRF_A 
   and   

   cσcc botmb_jbot

j

MRF_A 
. (26) 

Hence, the next goal will be to find the extreme value of the estimated damage for vector c 

and i-th element, i.e.:  
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where Di-max/MRF is the maximum value of the cumulative damage for the i-th element, 2Ni is 

the number of cycles to failure, and mc is the number of cycles after rainflow decomposition 

of the stress. Naturally, we have to observe the normality condition for c using the following 

transformation: 

 
'T'

'

cc

c
c





. (28) 

The searching process is realized by the FAT_MRFA computational program developed in 

MATLAB by authors of the article. The program calculates the elements’ (or nodes’) damage 

from a stress response using the original optimizing multiaxial rainflow procedure suggested 

by one of the authors of the article. 

 

 

4. OPTIMIZATION PROCESS FORMULATION AND ITS ALGORITHMIZATION 

 

4.1. Formulation of optimization problem 

 

The optimization problem of the mass minimization, which is subjected to the prescribed 

fatigue damage or life, is topical. For a structure of multiple elements, the optimization 

problem of discrete variables [5,8] can be stated mathematically as follows: 

 
  min

1




n

i

iii XlF x
,                                               (29) 

which subjected to: 

 
  0 p

k

max DD x
   or   

  0 p

k

min TT x
,   k=1, 2, ..., m, (30) 

where n is the number of elements, m is the number of element groups, Dp is the prescribed 

cumulative damage, TP is the prescribed fatigue life in hours, Dk
max is the calculated extreme 

value of the cumulative damage for k-th element group, and Tk
min is the calculated extreme 

fatigue life in hours for the k-th element group. Let us form a new penalized objective 

function thus: 

 
  min

1





n

i

iii XlF x

, (31) 

where the penalty function can be: 

 
  .T)(T,D)(D...k

,T)(T,D)(D

p

i

minp

i

max

k

p

i

minp

i

max

0or0if94,10

0or0if0





xx

xx





 (32) 

 

4.2. Optimizing algorithm proposal  

 

The penalized objective function  x


F  is solved by new discrete optimizing algorithm (see 

Fig. 3). The iterative optimizing process is as follows: 
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Fig. 3. Computational scheme of the suggested algorithm 

Definition: 

1. numvar - number of optimization variables 

2. Dp - cumulative damage limit 

3. V - vector of the discrete optimization variables  

4. hran - matrix of the limited values of optimization variables 

5. d0 - starting vector (serial number of the vector V values) 

Finite element analysis and cumulative damage counting for vector V 

(d0) 

Checking  

 the convergence 

 condition 
END 

Prediction of the new optimization variables (serial numbers of the vector V members) using 

the following iterative relation:                                  
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where 
i

jx
 is a serial number of the i-th design variable in j-th iteration step, ceil (Y) is a 

MATLAB function, which rounds the elements of Y to the nearest integers towards infinity, 

and Di
jmax is an extreme cumulative damage value for the elements group with the i-th design 

variable. If the new point xi
j+1 is incorrect, i.e., 
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, the following correction has 

to be realized: 

 





























p

i

maxji

j

i

j
D

D
logceilxx

2
101

. (34) 

 

The presented approach assumes that the design variables are arranged in ascending order. 

Based on the described approaches, we developed our computational program 

DISCRET_OPT_FAT (in MATLAB) with the fundamental algorithm and methodology 

presented in Fig. 3.  

 

 

5. NUMERICAL EXAMPLE  

 

Optimizing discrete thicknesses in the case of 

the thin-shell finite element model 

 

Let us design I cross section of the curved 

beam, as in Fig. 4, which is excited by random 

forces Fx, Fy, Fz (see Figs. 5-8). The design 

variables will be the thicknesses X1, X2, X3 (see 

Fig. 3). The computational parameters will be 

considered by the following: Young’s modulus 

E=2·105 [MPa], Poisson’s ratio =0.3 [-], 

mass density =7800 [kg.m-3], elastic limit 

y=247 [MPa] material damping coefficient 

=1.3·10-5 [-], fatigue limit C=137 [MPa], 

point of S-N curve [NA=104 cycles, 

Amax=217 MPa], exponent of S-N curve 

m=5, time interval t  0, 300 [sec], time step 

t=0.02 [sec], and prescribed cumulative 

damage Dp=0.003 [-]. 

We then apply the new discrete optimizing approach and the Gauss-Seidel optimizing 

method for a comparison study. The optimum will be found using the parameters presented in 

Tab. 1. The chosen results of the optimizing process and a short comparison study are 

presented in Tab. 2 and Figs. 9-12. 

X1 

X2 

X3 

 

Fig. 4. Virtual model of the curved beam 

in Pro/ENGINEER with identification 

of the optimizing variables X1, X2, X3 
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Tab. 1. 

Thicknesses of the applying sheets 

 

Serial number X 1 2 3 4 5 6 7 

Thickness [mm] 10 12 14 16 18 20 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Random behaviour of the force Fy (t)    Fig. 8. Random behaviour of the force Fz (t) 

 

Fx(t) 

Fy(t) 

Fz(t) 

 

Fig. 5. Computational finite element model 

and schematic description of the boundary 

conditions and loading forces 

 

 

Fig. 6. Random behaviour of the force Fx (t) 
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Tab. 2. 

Comparison of the presented optimizing approach with the Gauss-Seidel method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 9. History of the optimizing process Fig. 10. History of the optimizing process 

for discrete optimizing variables Xi in the case for discrete optimizing variables Xi in the case 

 of the new presented algorithm of the Gauss-Seidel algorithm   

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 11. History of the optimizing process Fig. 12. History of the optimizing process 

 for maximum cumulative damage Di  for maximum cumulative damage Di   

  in the case of the new presented algorithm in the case of the Gauss-Seidel algorithm 

 
Presented new algorithm Gauss-Seidel algorithms 

Initial values Final values Initial values Final values 

Thickness X1 [mm] 25 10 25 12 

Thickness X2 [mm] 25 18 25 12 

Thickness X3 [mm] 25 10 25 14 

Cumulative damage D1 5.3255e-008 1.9972e-008 5.3255e-008 1.2077e-008 

Cumulative damage D2 6.5712e-005 4.2394e-004 6.5712e-005 4.4584e-004 

Cumulative damage D3 1.5675e-007 1.9956e-006 1.5675e-007 1.1085e-006 

Objective function F [m3] 2.6840e-003 1.8283e-003 2.6840e-003 1.9131e-003 

 

 

 

 

 
Xi 

 

 

 

 

 
Xi 

Iteration Iteration 

 

 

 

Di 

Iteration 

 

 

 

Di 

Iteration 
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6. CONCLUSION 

 

Meshing with the use of shell elements is a relatively popular method for modelling thin-

walled structures and the so-called box objects for various purposes. The application of 

optimization tools in the design process is most often related to shell thickness. However, 

there are cases and tasks where we look for an optimum shape and the use of material. 

The authors focused on optimizing the thickness of the shell model in terms of fatigue 

damage by considering random stress behaviour. In terms of efficiency, for example, the fully 

stressed design method appears to be the best in strength dimensioning, since it is mainly 

suitable for truss and shell structures. But its application for dimensioning purposes with 

respect to the prescribed fatigue damage is inappropriate. Therefore, the authors have 

proposed a new algorithm based on discrete optimization and fast iterative search solutions. 

(Refer to the discussion on iterative relationships in Section 4.2.) 

The proposed computational algorithms contain the following new numerical analyses and 

procedures: 

- Implementation of the original discrete optimization algorithm in MATLAB  

- Standard finite element analysis of time-dependent stress in our own MATLAB 

software or in combination with commercial programs, such as Cosmos/M, ANSYS, 

and Adina   

- Special iterative searching process for critical equivalent stress as a linear combination 

of individual components from the perspective of extreme fatigue damage 

- Multichannel rainflow analysis in each iterative step and for each finite element (node) 

for cases of non-proportional random multiaxial stress response  

 

Therefore, as time-consuming calculations represent a general problem of computational 

mechanics, the application of effective optimizing approaches is always acceptable. The 

presented numerical method or calculation procedure is also suitable for other types of finite 

elements (beam, beams), but is limited to a certain extent. This is confirmed by the numerical 

tests realized by the authors. In the case of thin-shell finite elements, both the efficiency and 

the simplicity of the algorithm proved to be a great benefit. 

Finally, it should be noted that, despite the popularity of shell finite elements, we must 

be prudent when using them in terms of mesh density, introducing boundary conditions 

or evaluating stresses, especially in the corners of investigated objects. 
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