PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control of glass surface wettability via esterification with n-alkyl alcohols

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
Surface wettability plays an essential role in many processes and materials applications. It depends mainly on the surface roughness and chemical composition, thus through a controlled modification of these parameters, the wettability can be restrained. Glass is an inorganic solid material, composed mainly of amorphous silica, which surface, due to the presence of reactive hydroxyl groups, can be quite easily chemically modified. This feature can be used to control the wettability of glass by reaction with organic compounds. In this study, the esterification of glass silanol groups with n-alkyl alcohols (Cn/H2n+1/OH, n=3, 4, 6, 8, 10) was employed to modify its wettability. The effect of such modification on the physicochemical properties of glass surface was comprehensively investigated and characterised by the water contact angle, surface free energy, zeta potential, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) measurements. We demonstrate that the wettability of the esterified glass surface is strongly dependent on both the chain length of used alcohol and modification time. The alcohol molecule binds to the glass surface through a Si-O-C bond, leading to the formation of a monolayer that does not significantly affect the surface morphology and zeta potential. Conducted studies provided a broader view of the influence of this technique for modifying surface wettability on its physicochemical properties.
Rocznik
Strony
art. no. 145147
Opis fizyczny
Bibliogr. 42 poz., rys., kolor., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Process Engineering and Technology of Polymer and Carbon Materials, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • NTNU Norwegian University of Science and Technology, Department of Geoscience and Petroleum, S. P. Andersens veg 15a, 7031 Trondheim, Norway
Bibliografia
  • AVILA, A., MONTERO, I., GALÁN, L., RIPALDA, J.M., LEVY, R., 2000. Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study. Journal of Applied Physics 89, 212.
  • BALLARD, C.C., BROGE, E.C., ILER, R.K., JOHN, D.S. ST., MCWHORTER, J.R., 1961. Esterification of the surface of amorphous silica. Journal of Physical Chemistry 65, 20–25.
  • BARR, T.L., SEAL, S., 1998. Nature of the use of adventitious carbon as a binding energy standard. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13, 1239.
  • BEHRENS, S.H., GRIER, D.G., 2001. The charge of glass and silica surfaces. The Journal of Chemical Physics 115, 6716.
  • BELLMANN, C., CASPARI, A., MOITZI, C., BABICK, F., 2019. Dynamic and Electrophoretic Light Scattering –Guidelines for particle-size analysis and zeta-potential determination, 1 st. ed. Anton Paar GmbH.
  • BIGGS, S., GRIESER, F., 1994. Atomic Force Microscopy Imaging of Thin Films Formed by Hydrophobing Reagents. Journal of Colloid and Interface Science 165, 425–430.
  • BOURNIVAL, G., YANG, X., ATA, S., 2021. The interaction of a bubble with a particle-laden interface in frother solutions.Colloids and Surfaces A: Physicochemical and Engineering Aspects 621, 126609.
  • BUSSCHER, H.J., VAN PELT, A.W.J., DE BOER, P., DE JONG, H.P., ARENDS, J., 1984. The effect of surface roughening of polymers on measured contact angles of liquids. Colloids and Surfaces 9, 319–331.
  • CHEN, W., KARDE, V., CHENG, T.N.H., RAMLI, S.S., HENG, J.Y.Y., 2021. Surface hydrophobicity: effect of alkyl chainlength and network homogeneity. Front. Chem. Sci. Eng. 15, 90–98.
  • CRAS, J.J., ROWE-TAITT, C.A., NIVENS, D.A., LIGLER, F.S., 1999. Comparison of chemical cleaning methods of glass in preparation for silanisation. Biosensors and Bioelectronics 14, 683–688.
  • CYRAN, J.D., DONOVAN, M.A., VOLLMER, D., BRIGIANO, F.S., PEZZOTTI, S., GALIMBERTI, D.R., GAIGEOT, M.-P., BONN, M., BACKUS, E.H.G., 2019. Molecular hydrophobicity at a macroscopically hydrophilic surface. Proceedings of the National Academy of Sciences 116, 1520–1525.
  • DataPhysics Instruments GmbH, 2019. SCA 21.
  • DRELICH, J., CHIBOWSKI, E., MENG, D.D., TERPILOWSKI, K., 2011. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7, 9804–9828.
  • DRELICH, J.W., MARMUR, A., 2018. Meaningful contact angles in flotation systems: critical analysis and recommendations. Surface Innovations, 6:1–2, 19-30
  • FENG, D., NGUYEN, A. V., 2017. Contact angle variation on single floating spheres and its impact on the stability analysis of floating particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 520, 442–447.
  • FOWKES, F.M., 1964. ATTRACTIVE FORCES AT INTERFACES. Industrial & Engineering Chemistry 56, 40–52.
  • HAMPTON, M.A., DONOSE, B.C., TARAN, E., NGUYEN, A. V., 2009. Effect of nanobubbles on friction forces between hydrophobic surfaces in water. Journal of Colloid and Interface Science 329, 202–207.
  • HERMANSON, G.T., 2013. Silane Coupling Agents. Bioconjugate Techniques 535–548.
  • HUBERT, M., 2019. Industrial Glass Processing and Fabrication. Springer Handbooks 1195–1231.
  • HUNTER, T.N., WANLESS, E.J., JAMESON, G.J., 2009. Effect of esterically bonded agents on the monolayer structure and foamability of nano-silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects 334, 181–190.
  • ILER, R.K., 1979. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. John Wiley and Sons Ltd., New York.
  • ISSA, A.A., LUYT, A.S., 2019. Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review. Polymers 2019, Vol. 11, Page 537 11, 537.
  • KAELBLE, D.H., 1969. Dispersion-Polar Surface Tension Properties of Organic Solids. The Journal of Adhesion 2, 66–81.
  • LI, N., HU, P., ZHANG, X., LIU, Y., HAN, W., 2013. Effects of oxygen partial pressure and atomic oxygen on the microstructure of oxide scale of ZrB2–SiC composites at 1500 °C. Corrosion Science 73, 44–53.
  • LI, S., NGUYEN, A. V., SUN, Z., 2020. Stochastic induction time of attachment due to the formation of transient holes in the intervening water films between air bubbles and solid surfaces. Journal of Colloid and Interface Science 565, 345–350.
  • LUXBACHER, T., 2014. The Zeta Potential for Solid Surface Analysis - A practical guide to streaming potential measurement, 1st ed. Anton Paar GmbH, Austria.
  • MATISONS, J.G., 2012. Silanes and Siloxanes as Coupling Agents to Glass: A Perspective. In: Owen M., Dvornic P. (eds)Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht.
  • MCGOVERN, M.E., KALLURY, K.M.R., THOMPSON, M., 1994. Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane. Langmuir 10, 3607–3614.
  • MILLER, D.J., BIESINGER, M.C., MCINTYRE, N.S., 2002. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? Surface and Interface Analysis 33, 299–305.
  • OSSENKAMP, G.C., KEMMITT, T., JOHNSTON, J.H., 2001. New Approaches to Surface-Alkoxylated Silica with Increased Hydrolytic Stability. Chemistry of Materials 13, 3975–3980.
  • OSSENKAMP, G.C., KEMMITT, T., JOHNSTON, J.H., 2002. Toward functionalised surfaces through surface esterification of silica. Langmuir 18, 5749–5754.
  • OWENS, D.K., WENDT, R.C., 1969. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science 13, 1741–1747.
  • RABEL, W., 1977. Flüssigkeitsgrenzflächen in Theorie und Anwendungstechnik. Physikalische Blätter 33, 151–161.
  • RUECKRIEM, M., HAHN, T., ENKE, D., 2012. Inverse gas chromatographic studies on porous glass. Optica Applicata 42, 295–306.
  • SYGUSCH, J., RUDOLPH, M., 2021. A contribution to wettability and wetting characterisation of ultrafine particles with varying shape and degree of hydrophobisation. Applied Surface Science 566, 150725.
  • THOMAS YOUNG, 1805. III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95, 65–87.
  • TOUGAARD, S., 2013. Surface Analysis - X-ray Photoelectron Spectroscopy. Encyclopedia of Analytical Science 400–409.
  • VANSANT, E.F., VAN DER VOORT, P., VRANCKEN K.C., 1995. Characterisation and Chemical Modification of the Silica Surface, 1 st. ed, Characterisation and Chemical Modification of the Silica Surface. Elsevier Science.
  • ŻENKIEWICZ, M., 2007. Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering Vol. 24, 137–145.
  • ZHU, M., LERUM, M.Z., CHEN, W., 2012. How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir 28, 416–423.
  • ZHURAVLEV, L.T., 1987. Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3, 316–318.
  • ZHURAVLEV, L.T., 2000. The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces A: Physicochemical and Engineering Aspects 173, 1–38
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6c008a10-44a7-421e-9a08-b1977a14a2f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.